1,182 research outputs found

    The effect of the dust size distribution on asteroid polarization

    Full text link
    We have developed a theoretical description of how of an asteroid's polarization-phase curve will be affected by the removal of the dust from the surface due to a size-dependent phenomenon such as radiation pressure-driven escape of levitated particles. We test our calculations against new observations of four small (D ~ 1 km) near-Earth asteroids [(85236), (142348), (162900) and 2006 SZ_217] obtained with the Dual Beam Imaging Polarimeter on the University of Hawaii's 2.2 m telescope, as well as previous observations of (25143) Itokawa and (433) Eros. We find that the polarization of the light reflected from an asteroid is controlled by the mineralogical and chemical composition of the surface and is independent of dust particle. The relation between the slope of the polarization-phase curve beyond the inversion angle and the albedo of an asteroid is thus independent of the surface regolith size distribution and is valid for both Main Belt and Near-Earth asteroids.Comment: accepted to A

    Probing New Physics through mu-e Universality in K->lnu

    Full text link
    The recent NA48/2 improvement on R_K=Gamma(K->e nu_e)/Gamma(K->mu nu_mu) emphasizes the role of K_l2 decays in probing the mu-e universality. Supersymmetric (SUSY) extensions of the Standard Model can exhibit mu-e non-universal contributions. Their origin is twofold: those deriving from lepton flavor conserving couplings are subdominant with respect to those arising from lepton flavor violating (LFV) sources. We show that mu-e non-universality in K_l2 is quite effective in constraining relevant regions of SUSY models with LFV (for instance, supergravities with a see-saw mechanism for neutrino masses). A comparison with analogous bounds coming from tau LFV decays proves the relevance of the measurement of R_K to probe LFV in SUSY.Comment: v2: 5 pages, 1 figure. Comments and 2 references adde

    What heavy quanta bounds could be inferred from a Higgs discovery?

    Get PDF
    The Higgs couplings can receive non-decoupling corrections due to heavy quanta, and deviations from the SM can be used to test its presence. The possible Higgs signal recently reported at LEP, with mh=115 GeV, severely constrains the presence of heavy quanta, such as a heavy fourth family. At Tevatron, the Higgs production by gluon fusion, followed by the decay h -> WW*, can also be used to probe the existence of heavy colored particles, including additional families, chiral sextet and octet quarks. Within the MSSM, we also find that gluon fusion is a sensitive probe for the squark spectrum.Comment: 12 pages, 3 tables, 1 figure. Accepted in Mod. Phys. Lett. A (2001

    Characterization of Active Main Belt Object P/2012 F5 (Gibbs): A Possible Impacted Asteroid

    Get PDF
    In this work we characterize the recently discovered active main belt object P/2012 F5 (Gibbs), which was discovered with a dust trail > 7' in length in the outer main belt, 7 months prior to aphelion. We use optical imaging obtained on UT 2012 March 27 to analyze the central condensation and the long trail. We find nuclear B-band and R-band apparent magnitudes of 20.96 and 19.93 mag, respectively, which give an upper limit on the radius of the nucleus of 2.1 km. The geometric cross-section of material in the trail was ~ 4 x 10^8 m^2, corresponding to a dust mass of ~ 5 x 10^7 kg. Analysis of infrared images taken by the Wide-Field Infrared Survey Explorer in September 2010 reveals that the object was below the detection limit, suggesting that it was less active than it was during 2012, or possibly inactive, just 6 months after it passed through perihelion. We set a 1-sigma upper limit on its radius during this time of 2.9 km. P/2012 F5 (Gibbs) is dynamically stable in the outer main belt on timescales of ~ 1 Gyr, pointing towards an asteroidal origin. We find that the morphology of the ejected dust is consistent with it being produced by a single event that occurred on UT 2011 July 7 ±\pm 20 days, possibly as the result of a collision with a small impactor.Comment: 29 pages, 5 figures. Accepted for publication in Ap

    The Rafita asteroid family

    Full text link
    The Rafita asteroid family is an S-type group located in the middle main belt, on the right side of the 3J:-1A mean-motion resonance. The proximity of this resonance to the family left side in semi-major axis caused many former family members to be lost. As a consequence, the family shape in the (a,1/D)(a,1/D) domain is quite asymmetrical, with a preponderance of objects on the right side of the distribution. The Rafita family is also characterized by a leptokurtic distribution in inclination, which allows the use of methods of family age estimation recently introduced for other leptokurtic families such as Astrid, Hansa, Gallia, and Barcelona. In this work we propose a new method based on the behavior of an asymmetry coefficient function of the distribution in the (a,1/D)(a,1/D) plane to date incomplete asteroid families such as Rafita. By monitoring the time behavior of this coefficient for asteroids simulating the initial conditions at the time of the family formation, we were able to estimate that the Rafita family should have an age of 490±200490\pm200 Myr, in good agreement with results from independent methods such as Monte Carlo simulations of Yarkovsky and Yorp dynamical induced evolution and the time behaviour of the kurtosis of the sin⁥(i)\sin{(i)} distribution. Asteroids from the Rafita family can reach orbits similar to 8\% of the currently known near Earth objects. ≃\simeq1\% of the simulated objects are present in NEO-space during the final 10 Myr of the simulation, and thus would be comparable to objects in the present-day NEO population.Comment: Accepted 2017 January 19. Received 2017 January 17; in original form 2016 September

    The Euphrosyne family's contribution to the low albedo near-Earth asteroids

    Get PDF
    The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the nu_6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near-Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ~3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne.Comment: Accepted for publication in Ap

    Higgs Mass Textures in Flipped SU(5)

    Get PDF
    We analyze the Higgs doublet-triplet mass splitting problem in the version of flipped SU(5) derived from string theory. Analyzing non-renormalizable terms up to tenth order in the superpotential, we identify a pattern of field vev's that keeps one pair of electroweak Higgs doublets light, while all other Higgs doublets and all Higgs triplets are kept heavy, with the aid of the economical missing-doublet mechanism found in the field-theoretical version of flipped SU(5). The solution predicts that second-generation charge -1/3 quarks and charged leptons are much lighter than those in the third generation.Comment: 15 pages LaTe
    • 

    corecore