46 research outputs found
Search for Tau Flavour Violation at the LHC
We explore the prospects for searches at the LHC for sparticle decays that
violate lepton number, in the light of neutrino oscillation data and the
seesaw model for neutrino masses and mixing. We analyse the theoretical and
phenomenological conditions required for tau flavour violation to be observable
in \chi_2 \to \chi + \tau^\pm \mu^\mp decays, for cosmologically interesting
values of the relic neutralino LSP density. We study the relevant
supersymmetric parameter space in the context of the Constrained Minimal
Supersymmetric Extension of the Standard Model (CMSSM) and in SU(5) extensions
of the theory. We pay particular attention to the possible signals from
hadronic tau decays, that we analyse using PYTHIA event simulation. We find
that a signal for \tau flavour-violating \chi_2 decays may be observable if the
branching ratio exceeds about 10%. This may be compatible with the existing
upper limit on \tau \to \mu \gamma decays if there is mixing between
right-handed sleptons, as could be induced in non-minimal SU(5) GUTs.Comment: 24 pages, 10 fig
Yukawa structure, flavour and CP violation in Supergravity
The hierarchical structure of fermion masses and mixings strongly suggests an
underlying family symmetry. In supergravity any familon field spontaneously
breaking this symmetry necessarily acquires an F-term which contributes to the
soft trilinear couplings. We show, as a result, mu -> e gamma decay can receive
large contributions from this source at the level of current experimental
bounds and thus this channel may provide the first indication of supersymmetry
and a clue to the structure of the soft breaking sector. Using the mercury EDM
bounds we find strong bounds on the right handed down quark mixing angles that
are inconsistent with models relating them to neutrino mixing angles and favour
a near-symmetric form for the magnitude of the down quark mass matrix.Comment: Final version to appear in PRD. Improved discusion of several points,
updated references, typos correcte
On the Spontaneous CP Breaking at Finite Temperature in a Nonminimal Supersymmetric Standard Model
We study the spontaneous CP breaking at finite temperature in the Higgs
sector in the Minimal Supersymmetric Standard Model with a gauge singlet. We
consider the contribution of the standard model particles and that of stops,
charginos, neutralinos, charged and neutral Higgs boson to the one-loop
effective potential. Plasma effects for all bosons are also included. Assuming
CP conservation at zero temperature, so that experimental constraints coming
from, {\it e.g.}, the electric dipole moment of the neutron are avoided, and
the electroweak phase transition to be of the first order and proceeding via
bubble nucleation, we show that spontaneous CP breaking cannot occur inside the
bubble mainly due to large effects coming from the Higgs sector. However,
spontaneous CP breaking can be present in the region of interest for the
generation of the baryon asymmetry, namely inside the bubble wall. The
important presence of very tiny explicit CP violating phases is also commented.Comment: 28 pages, 4 figures available upon request, DFPD 94/TH/38 and SISSA
94/81-A preprint
Cosmic Microwave Background Anisotropy with Cosine-Type Quintessence
We study the Cosmic Microwave Background (CMB) anisotropies produced by
cosine-type quintessence models. In our analysis, effects of the adiabatic and
isocurvature fluctuations are both taken into account. For purely adiabatic
fluctuations with scale invariant spectrum, we obtain a stringent constraint on
the model parameters using the CMB data from COBE, BOOMERanG and MAXIMA.
Furthermore, it is shown that isocurvature fluctuations have significant
effects on the CMB angular power spectrum at low multipoles in some parameter
space, which may be detectable in future satellite experiments. Such a signal
may be used to test the cosine-type quintessence models.Comment: 21 pages, 9 figure
Product-Group Unification in Type IIB String Thoery
The product-group unification is a model of unified theories, in which
masslessness of the two Higgs doublets and absence of dimension-five proton
decay are guaranteed by a symmetry. It is based on SU(5) x U(N) (N=2,3) gauge
group. It is known that various features of the model are explained naturally,
when it is embedded in a brane world. This article describes an idea of how to
accommodate all the particles of the model in Type IIB brane world. The
GUT-breaking sector is realized by a D3--D7 system, and chiral quarks and
leptons arise from intersection of D7-branes. The D-brane configuration can be
a geometric realization of the non-parallel family structure of quarks and
leptons, an idea proposed to explain the large mixing angles observed in the
neutrino oscillation. The tri-linear interaction of the next-to-minimal
supersymmetric standard model is obtained naturally in some cases.Comment: 33 pages, 5 figure
Effect of FCNC mediated Z boson on lepton flavor violating decays
We study the three body lepton flavor violating (LFV) decays , and the semileptonic decay in the flavor changing neutral current (FCNC) mediated boson
model. We also calculate the branching ratios for LFV leptonic B decays,
, , and the
conversion of muon to electron in Ti nucleus. The new physics parameter space
is constrained by using the experimental limits on and
. We find that the branching ratios for and processes could be as large as and . For other LFV B decays the branching ratios are found to be too
small to be observed in the near future.Comment: 15 pages, 8 figures, typos corrected, one more section added, version
to appear in EPJ
Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders
In split supersymmetry the gauginos and higgsinos are the only supersymmetric
particles possibly accessible at foreseeable colliders like the CERN Large
Hadron Collider (LHC) and the International Linear Collider (ILC). In order to
account for the cosmic dark matter measured by WMAP, these gauginos and
higgsinos are stringently constrained and could be explored at the colliders
through their direct productions and/or virtual effects in some processes. The
clean environment and high luminosity of the ILC render the virtual effects of
percent level meaningful in unraveling the new physics effects. In this work we
assume split supersymmetry and calculate the virtual effects of the
WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e-
-> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production
cross section of e+e- -> Zh can be altered by a few percent in some part of the
WMAP-allowed parameter space, while the correction to the WW-fusion process
e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated
with the cross sections of chargino pair productions and can offer
complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs
Flavour and Collider Interplay for SUSY at LHC7
The current 7 TeV run of the LHC experiment shall be able to probe gluino and
squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are
found in the jets plus missing energy channel by the end of a 5 fb run,
we explore the flavour constraints on three models with a CMSSM-like spectrum:
the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In
particular, we focus on decays that might have been measured by the time the
run is concluded, such as and . We also analyse
constraints imposed by neutral meson bounds and electric dipole moments. The
interplay between collider and flavour experiments is explored through the use
of three benchmark scenarios, finding the flavour feedback useful in order to
determine the model parameters and to test the consistency of the different
models.Comment: 44 pages, 15 figures; v3: minor corrections, added references,
updated figures. Version accepted for publicatio
The Formation of Cosmic Structures in a Light Gravitino Dominated Universe
We analyse the formation of cosmic structures in models where the dark matter
is dominated by light gravitinos with mass of eV -- 1 keV, as predicted
by gauge-mediated supersymmetry (SUSY) breaking models. After evaluating the
number of degrees of freedom at the gravitinos decoupling (), we compute
the transfer function for matter fluctuations and show that gravitinos behave
like warm dark matter (WDM) with free-streaming scale comparable to the galaxy
mass scale. We consider different low-density variants of the WDM model, both
with and without cosmological constant, and compare the predictions on the
abundances of neutral hydrogen within high-redshift damped Ly-- systems
and on the number density of local galaxy clusters with the corresponding
observational constraints. We find that none of the models satisfies both
constraints at the same time, unless a rather small value (\mincir
0.4) and a rather large Hubble parameter (\magcir 0.9) is assumed.
Furthermore, in a model with warm + hot dark matter, with hot component
provided by massive neutrinos, the strong suppression of fluctuation on scales
of \sim 1\hm precludes the formation of high-redshift objects, when the
low-- cluster abundance is required. We conclude that all different variants
of a light gravitino DM dominated model show strong difficulties for what
concerns cosmic structure formation.
This gives a severe cosmological constraint on the gauge-mediated SUSY
breaking scheme.Comment: 28 pages,Latex, submitted for publication to Phys.Rev.
Light charged Higgs at the beginning of the LHC era
The terascale will be explored with the start of the LHC. One of the most
fundamental questions which we expect to be answered is the root of electroweak
symmetry breaking and whether the Higgs mechanism is realized in nature or not.
In this context we pose the question if existing experimental data still allow
for a light non-minimal Higgs sector. We tackle this question first in the
context of the two Higgs doublet model and then we concentrate in two
supersymmetric models, the constrained MSSM and the MSSM with non-universal
Higgs masses. In both supersymmetric scearios, light pseudoscalar and light
charged-Higgs bosons are still viable provided tan beta is large. In this
regime, we emphasize the importance of the constraints provided by the decay B
to tau nu mediated by the charged-Higgs at tree-level. In addition we comment
on generic predictions for hadronic colliders and indirect searches in such
scenarios.Comment: 28 pages, 9 figures. Final version to be published in JHEP. Added
comparison with previous works. Technical details clarifie