1,010 research outputs found

    A Morse-theoretical analysis of gravitational lensing by a Kerr-Newman black hole

    Full text link
    Consider, in the domain of outer communication of a Kerr-Newman black hole, a point (observation event) and a timelike curve (worldline of light source). Assume that the worldline of the source (i) has no past end-point, (ii) does not intersect the caustic of the past light-cone of the observation event, and (iii) goes neither to the horizon nor to infinity in the past. We prove that then for infinitely many positive integers k there is a past-pointing lightlike geodesic of (Morse) index k from the observation event to the worldline of the source, hence an observer at the observation event sees infinitely many images of the source. Moreover, we demonstrate that all lightlike geodesics from an event to a timelike curve in the domain of outer communication are confined to a certain spherical shell. Our characterization of this spherical shell shows that in the Kerr-Newman spacetime the occurrence of infinitely many images is intimately related to the occurrence of centrifugal-plus-Coriolis force reversal.Comment: 14 pages, 2 figures; REVTEX; submitted to J. Math. Phy

    Extension of the Discrete-Ordinates Transport Solver IDT to Regular Two-Dimensional Triangular Meshes

    Get PDF
    In this work, the Integro-Differential Transport solver (IDT), which is one of the transport solvers available in the APOLLO3(R) lattice code, has been extended to handle 2D unstructured meshes. In particular, the previously implemented method of short characteristics (MoSC) used to solve for the spatial variable in the framework of an SN approach has been extended to triangular cells which represent the natural discretization for calculating the hexagonal lattices present in fast reactors. The coefficients of the collision-probability matrices have been evaluated by means of a split-cell algorithm, specialized for dealing with different orientations of the triangle with respect to each discrete ordinate of the SN sweeping. A new sweeping routine for unstructured meshes has been added to IDT. The correct implementation of the method and its robustness with respect to the skewness and the optical thickness of the triangle has been verified. The method of manufactured solutions has been employed to obtain a numerical estimate of the spatial convergence order of the method. The same version of the MoSC has then been implemented in MINARET, another solver available in APOLLO3(R). Finally, the modified IDT applied to an unstructured mesh for the C5G7 benchmark has been successfully benchmarked against MC calculations, and the modified MINARET has been applied to a neutron transport calculation for the RJH research reactor

    Plasma protein's glycation is decreased in Sprague Dawley rats under caloric restriction.

    Get PDF
    Different dietary regimens were applied to three cohorts of rats. The first was fed ad libitum every day (AL), the second was fed ad libitum every other day (EOD) and the third was fed a diet equivalent to 60% of the caloric intake (60% CI) of the AL cohort. Levels of stable early glycation products in plasma proteins were then measured according to two different methods, Glycation of plasma proteins progressively increased in AL animals belonging to the 2-12 month age interval, while it showed a less pronounced age-dependent increase in EOD and 60% CI animals. The lowest degree of glycation was detected 2-3 months after the beginning of caloric restriction, After 12 months of age a lower level of glycation was detected in 60% CI rats than in EOD animals, Body weight was lower in restricted animals than in AL animals and was lowest in 60% CI rats. During the life span, glycemia was lower in fasting 60% CI than in EOD or AL rats

    Plasma technology increases the efficacy of prothioconazole against fusarium graminearum and fusarium proliferatum contamination of maize (Zea mays) seedlings

    Get PDF
    The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Further-more, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings

    Finsler geodesics in the presence of a convex function and their applications

    Full text link
    We obtain a result about the existence of only a finite number of geodesics between two fixed non-conjugate points in a Finsler manifold endowed with a convex function. We apply it to Randers and Zermelo metrics. As a by-product, we also get a result about the finiteness of the number of lightlike and timelike geodesics connecting an event to a line in a standard stationary spacetime.Comment: 16 pages, AMSLaTex. v2 is a minor revision: title changed, references updated, typos fixed; it matches the published version. This preprint and arXiv:math/0702323v3 [math.DG] substitute arXiv:math/0702323v2 [math.DG

    UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    Get PDF
    Abstract. Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation

    Effect of two different source of forage on the organic matter digestibility in Mediterranean Italian Buffalo cows

    Get PDF
    The present study aimed to evaluate the influence of two different source of forage (haysilage and hay) during the lactation on organic matter digestibility (OMD) in buffalo cows. Lactating buffaloes (n = 40) at 29.6 days in milk (DIM) were equally divided as function of previous milk yield into Group 1 (meadow hay, n = 20) and Group 2 [haysilage (Lolium multiflorum), n = 20]. The diets were isoenergetic [0.92 milk unit forage (MUF) on dry matter basis] and isoproteic (16.2 % crude protein on dry matter basis) and administred as total mixed ration (TMR). From all the buffaloes, for each group and in two sampling time (first sampling, DIM = 74.0 and second sampling, DIM = 129.0) the faeces were collected in order to evaluate the in vivo digestibility. Overall the trial, the subjects fed haysilage showed higher OMD than those fed hay (66.1 vs 45.7; P<0.01), moreover the in vivo digestibility was affected by the DIM, in particular in the group fed hay (40.6 vs 53.4; P<0.0001, respectively). This work underlines the importance of the administration of the haysilage (Lolium multiflorum) as source of high quality forage because it gives, overall the lactation, more nutritive principles compared with meadow hay

    Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances

    Get PDF
    The high temporal resolution of data acquisition by geostationary satellites and their capability to resolve the diurnal cycle allows for the retrieval of a valuable source of information about geophysical parameters. In this paper, we implement a Kalman filter approach to applying tempo-ral constraints on the retrieval of surface emissivity and temperature from radiance measurements made from geostationary platforms. Although we consider a case study in which we apply a strictly temporal constraint alone, the methodology will be presented in its general four-dimensional, i.e., space-time, setting. The case study we consider is the retrieval of emissivity and surface temperature from SEVIRI (Spinning Enhanced Visible and Infrared Imager) observations over a target area encompassing the Iberian Peninsula and northwestern Africa. The retrievals are then compared with in situ data and other similar satellite products. Our findings show that the Kalman filter strategy can simultaneously retrieve surface emissivity and temperature with an accuracy of ± 0.005 and ±0.2 K, respectively

    A methodology for the customization of hinged ankle-foot orthoses based on in vivo helical axis calculation with 3D printed rigid shells

    Get PDF
    This study aims to develop techniques for ankle joint kinematics analysis using motion capture based on stereophotogrammetry. The scope is to design marker attachments on the skin for a most reliable identification of the instantaneous helical axis, to be targeted for the fabrication of customized hinged ankle-foot orthoses. These attachments should limit the effects of the experimental artifacts, in particular the soft-tissue motion artifact, which affect largely the accuracy of any in vivo ankle kinematics analysis. Motion analyses were carried out on two healthy subjects wearing customized rigid shells that were designed through 3D scans of the subjects’ lower limbs and fabricated by additive manufacturing. Starting from stereophotogrammetry data collected during walking and dorsi-plantarflexion motor tasks, the instantaneous and mean helical axes of ankle joint were calculated. The customized shells matched accurately the anatomy of the subjects and allowed for the definition of rigid marker clusters that improved the accuracy of in vivo kinematic analyses. The proposed methodology was able to differentiate between subjects and between the motor tasks analyzed. The observed position and dispersion of the axes were consistent with those reported in the literature. This methodology represents an effective tool for supporting the customization of hinged ankle-foot orthoses or other devices interacting with human joints functionality

    A Feedforward Neural Network Approach for the Detection of Optically Thin Cirrus From IASI-NG

    Get PDF
    The identification of optically thin cirrus is crucial for their accurate parameterization in climate and Earth's system models. This study exploits the characteristics of the infrared atmospheric sounding interferometer-new generation (IASI-NG) to develop an algorithm for the detection of optically thin cirrus. IASI-NG has been designed for the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar system second-generation program to continue the service of its predecessor IASI from 2024 onward. A thin-cirrus detection algorithm (TCDA) is presented here, as developed for IASI-NG, but also in parallel for IASI to evaluate its performance on currently available real observations. TCDA uses a feedforward neural network (NN) approach to detect thin cirrus eventually misidentified as clear sky by a previously applied cloud detection algorithm. TCDA also estimates the uncertainty of "clear-sky" or "thin-cirrus" detection. NN is trained and tested on a dataset of IASI-NG (or IASI) simulations obtained by processing ECMWF 5-generation reanalysis (ERA5) data with the s-IASI radiative transfer model. TCDA validation against an independent simulated dataset provides a quantitative statistical assessment of the improvements brought by IASI-NG with respect to IASI. In fact, IASI-NG TCDA outperforms IASI TCDA by 3% in probability of detection (POD), 1% in bias, and 2% in accuracy, and the false alarm ratio (FAR) passes from 0.02 to 0.01. Moreover, IASI TCDA validation against state-of-the-art cloud products from Cloudsat/CPR and CALIPSO/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) real observations reveals a tendency for IASI TCDA to underestimate the presence of thin cirrus (POD = 0.47) but with a low FAR (0.07), which drops to 0.0 for very thin cirrus
    • …
    corecore