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Abstract. The high temporal resolution of data acquisition for Meteosat Third Generation (MTG), which will carry the
by geostationary satellites and their capability to resolve theFlexible Combined Imager (FCI) with a spatial resolution of
diurnal cycle allows for the retrieval of a valuable source of 1-2 km at the sub-satellite point and 16 channels (8 in the
information about geophysical parameters. In this paper, wehermal band), and an infrared sounder (IRS) that will be
implement a Kalman filter approach to apply temporal con-able to provide unprecedented information on horizontally,
straints on the retrieval of surface emissivity and temperaturevertically, and temporally (four-dimensional; 4-D) resolved
from radiance measurements made from geostationary platvater vapor and temperature structures of the atmosphere.
forms. Although we consider a case study in which we ap-The IRS will have a hyperspectral resolution of 0.625¢ém
ply a strictly temporal constraint alone, the methodology will wave numbers, will take measurements in two bands, the
be presented in its general four-dimensional, i.e., space-timdpng-wave infrared (LWIR) (14.3—8.3 um) and the mid-wave
setting. The case study we consider is the retrieval of emisinfrared (MWIR) (6.25-4.6 pm), and with a spatial resolution
sivity and surface temperature from SEVIRI (Spinning En- of 4 km and a repeat cycle of 60 min.
hanced Visible and Infrared Imager) observations over a tar- Because geostationary satellites are capable of resolving
get area encompassing the Iberian Peninsula and northwedfie diurnal cycle, and hence providing time-resolved se-
ern Africa. The retrievals are then compared with in situ dataquences or times series of observations, they are a source
and other similar satellite products. Our findings show thatof information which can suitably constrain the derivation
the Kalman filter strategy can simultaneously retrieve sur-of geophysical parameters. In this paper, we implement a
face emissivity and temperature with an accuracy @005  Kalman filter (KF) approach for applying temporal con-
and+0.2 K, respectively. straints on the retrieval of surface emissivity and tempera-
ture from radiance measurements made from MSG SEVIRI
(Spinning Enhanced Visible and Infrared Imager). The study
has been performed also in view of future applications to the
1 Introduction MTG mission. This mission should improve sounding den-
sity, quality and accuracy of surface and atmospheric param-
Infrared instrumentation on geostationary satellites is nowgters.
rapidly approaching the spectral quality and accuracy of The Kalman filter Kalman 1960 Kalman and Bucy
modern sensors on board polar platforms. Currently at the| g6 1) has received widespread attention in the context of nu-
core of European Organisation for the Exploitation of Me- merical weather prediction (NWP) and in the broad research
teorological Satellites (EUMETSAT) geostationary meteo- greq of data assimilation (e.¢oreng 1986 Evensen1994

rological programme is the Meteosat (meteorological satel-Tajagrand 1997 Nychka and Andersqn2010. Specific
lite) Second Generation (MSG). EUMETSAT is preparing
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applications to atmospheric chemistry with satellite data have To check the quality and performance of our approach, KF
been described by, e.dchattatov et al(1999; Lamarque et  retrieval results will be compared with in situ data, space-
al.(1999; Levelt et al.(1998. For a detailed review and tuto- time collocated ECMWF (European Centre for Medium-
rial of the theoretical background of KF the reader is referredRange Weather Forecasts) analysis and other similar satellite
to, e.g.,Wikle and Berliner(2007); Nychka and Anderson products, such as those from the AVHRR (Advanced Very
(2010. High Resolution Radiometer).

The present paper addresses the capability of the Kalman The study is organized as follows. Secti®nvill present
filter to convey temporal constraint in the retrieval of sur- the data used in the analysis. This section will also provide
face parameters though time series of geostationary satellitsome details about the forward model we have developed for
data. The fact that time continuity of the observations bringsSEVIRI. Section3 will deal with the retrieval methodology,
much information about atmospheric processes is normallywhereas Sectl will exemplify the application of the method-
evidenced by the pronounced dynamical correlation, whichology to a SEVIRI case study. Finally, conclusions will be
in many instances can be modeled with Markov chains ormade in Sect.

Markov stochastic processes (eSgrig 1992 Cuomo et al.
1994 Seriq 1994 and references therein).

To exploit the temporal information, we focus on imple-
menting the KF so that it is capable of incorporating dynam-2 Data and forward modeling
ical correlation within the retrieval process without making
use of a full dynamical NWP system. We aim at develop- In this paper, the KF methodology will be applied for the re-
ing a retrieval strategy for surface emissivity and tempera-trieval of surface emissivities and surface temperature from
ture which allows us insight into understanding how we canSEVIRI infrared channels in the atmospheric window over
better exploit satellite data per se. In other words, the analya target area, covering a geographic region with very differ-
sis is conducted within a context which envisages an almosent surface features: sea water, arid, vegetated and cultivated
entirely data-driven system. In this respect, we clarify that al-land, and urban areas.
though we try to exploit tools such as the KF which are gen- The SEVIRI imager on board Meteosat-9 allows for a
erally used in a data assimilation context, we aim at addresscomplete image scan (full Earth scan) once every 15 min pe-
ing a retrieval problem limited to surface parameters. We doriod with a spatial resolution of 3km for 12 channels (8 in
not want to solve an assimilation problem according to thethe thermal band), over the full disk covering Europe, Africa
common method (e.g., s&&/chka and Andersqr2010 of and part of South America.
combining a NWP model with observations. SEVIRI infrared channels range from 3.9 um to 12 um.

In view of future MTG applications, the KF methodology Their conventional definition in terms of channel number is
is presented in a general context which applies to both spagiven in Tablel, whereas their spectral response is shown in
tial and temporal constraints. However, it will be exempli- Fig. 1. The figure also provides a comparison with a typical
fied for a case study in which we consider a strictly temporallASI (Infrared Atmospheric Sounder Interferometer) spec-
constraint alone. As said, this is the problem of surface tem+rum at a spectral sampling of 0.25 ¢t
perature {s) and emissivity €) separation, that is, the simul- IASI has been developed in France by the Centre National
taneous retrieval ofTs, €) from SEVIRI infrared channels. d’Etudes Spatiales (CNES) and is on board the Metop (Me-
Toward this objective, a case study has been defined whickeorological Operational Satellite) platform, a series of three
includes a specific target area characterized by a large varisatellites belonging to the EUMETSAT European Polar Sys-
ety of surface features. tem (EPS). The instrument has a spectral coverage extend-

The problem of retrieving surface emissivity and temper-ing from 645 to 2760 cm?, which, with a sampling interval
ature from satellite data has long been studied. A recent reAc = 0.25 cnT %, gives 8461 data points or channels for each
view of the subject has been provided byet al. (2013. single spectrum. Data samples are taken at intervals of 25 km
According to this review, our KF approach from a geosta- along and across track, each sample having a minimum diam-
tionary platform is novel. A similarity could be found with eter of about 12 km. Further details on IASI and its mission
the scheme developed hyet al. (2011). However, while in  objectives can be found idilton et al.(2012. Atmospheric
Li et al. (2011 the observations are accumulated for a pre-parameters (temperature, water vapor and ozone profiles) de-
scribed time slot (normally six hours), we pursue a genuinerived from IASI spectral radiances will be used in this paper
dynamical strategy which exploits the sequential approach ofo assess the sensitivity of SEVIRI atmospheric window in-
the Kalman filter. This results in an algorithm which does not frared channels to the atmospheric state vector.
need to increase the dimensionality of the data space becauseAs stated before, for the purpose of this study, SEVIRI
of time accumulation, while preserving the highest time res-Meteosat-9 high rate level 1.5 image data and IASI (level 1C)
olution prescribed by the repeat time of the geostationary in-observations have been collected for the target area shown in
strumentation (15 min for SEVIRI). Fig. 2 for the full month of July 2010. The area is covered

with 392 088 Meteosat-9 pixels and includes Spain, Portugal,
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Table 1. Definition of SEVIRI infrared channels and radiometric 20’ W 10w o 0 E
noise in noise equivalent difference temperature (NEDT) at a scene 50 N {

temperature of 280 K.

Channel wave no.
Number  (cntl) wavelength (um) NEDT at 280K (K) Seville - Mediterranean $éa d
est area test afea
1 2564.10 3.9 a0 N : . D
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4 1149.40 8.7 0.13 é
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6 925.90 10.8 0.13 R
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'e E ated east of Seville (Spain), in a flat dune area in the Sahara desert,
% loa g and below island of Sardinia in the Mediterranean sea.
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° 102 For the whole target area shown in F&.we have also

acquired ancillary information for the characterization of the
o thermodynamical atmospheric state. This information is pro-
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vided by ECMWF analysis products for the surface temper-
ature, Ts and the atmospheric profiles of temperature, wa-
Fig. 1. SEVIRI channel spectral response superimposed on a typicater vapor and ozon€l’, Q, O) at the canonical hours 00:00,
IASI spectrum. 06:00, 12:00 and 18:00 UTC. ECMWF model data are pro-

vided on 05 x 0.5 degree grid. In each ECMWF grid box

there are on average 200 SEVIRI pixels, for which we as-
part of the northwestern Africa, and the western part of thesume that the atmospheric state vector is the time collocated
Mediterranean Basin. ECMWF analysis (e.g., see Fig).

To check the performance of the scheme, we have also Within the inverse scheme, an important issue concerns
selected three smaller areas (also shown in Eigith red a priori information to constrain the retrieval of emissiv-
boxes) in Spain, the Sahara desert, and the Mediterraneaty. To this end, we have used the University of Wiscon-
Basin, which have a size of®x 0.5 degrees and each cor- sin Baseline Fit Global Infrared Land Surface Emissiv-
respond to one box of the ECMWF analysis grid mesh (e.g.jty Database (UW/BFEMIS database, elgtp://cimss.ssec.
see Fig.3). For the Spanish location the area includes 187wisc.edu/iremig/(Seemann et gl2008 Borbas and Rustgn
SEVIRI pixels, 219 for the Sahara desert and 178 for the2010. The UW/BFEMIS database is available for years 2003
Mediterranean Basin. The land coverage for the small tarto 2012, globally, with 0.05 degree spatial resolution. Details
get area close to Seville is a mosaic of cultivated areas, withof how to transform UW/BFEMIS database emissivity to SE-
green grass, foliage, bare soil and urban areas. For this typ€IRI channel emissivity can be found Berio et al(2013;
of coverage we expect an emissivity at atmospheric windowMasiello et al.(2013.
well above 0.90. The small Sahara desert area is just a desert For the purpose of comparison, we have used also NOAA
sand homogeneous flat area, with no vegetation. In this casNational Ocean and Atmosphere Administration) Opti-
we know that emissivity is dominated by quartz particles, mum Interpolation 1/4 degree daily Sea-Surface Tempera-
which yield a characteristic fingerprint at 8.6 um (reststrahlenture (OISST) analyses for the month of July 2010. The anal-
doublet of quartz). This strong signature is in the middle of ysis, which is a product of the processing of AMSR (Ad-
the SEVIRI channel at 8.7 um, and, therefore, the retrievedranced Microwave Scanning Radiometer) and AVHRR, will
emissivity at this channel has to show the quartz fingerprint.be compared to that obtained by SEVIRI for sea surface. The
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T T We do not consider the SEVIRI channel at 3.9 um since
861 40 ol during daytime it is contaminated by reflected solar radiation
and affected by non-local thermodynamic equilibrium (non-
LTE) effects. Furthermore, the GQine mixing at 4.3 um
CO, band head is poorly modeled in state-of-the-art radiative
transfer and can add potentially large bias.

Regarding channels 2 to 8, the forward modeSEVIRI
has been derived from-IASI (Amato et al, 2002 which is a

monochromatic radiative transfer designed for the fast com-
putation of spectral radiance and its derivatives (Jacobian)
with respect to a given set of geophysical parameters.

The form of the radiative transfer equation, whicHASI
: and hencer-SEVIRI consider in its numerical scheme, has
: been recently reviewed and presented/iasiello and Serio
(2013, to which the interested reader is referred. The model
also takes into account the radiance term, which is the ra-
Fig. 3. Example of overlapping between the SEVIRI fine mesh and diation reflected from the surface back to the satellite. Both
that coarse corresponding to the ECMWF analysis. Lambertian and specular reflections can be modeled.

To accomplish the radiative transfer calculatiorlASI
uses a lookup table for the optical depth; this table was de-
veloped from one of the most popular line-by-line forward
models, Line-By-Line Radiative Transfer Model (LBLRTM)
(Clough et al.2005.

The modelo-SEVIRI is itself based on a lookup table,
which is obtained by a proper down-sampling of the lookup

Rable fora-IASI. For this reason we need to give some details
abouto -1ASI in order to describe how-SEVIRI works.

Theo-1ASI model Amato et al, 2002 parameterizes the
monochromatic optical depth with a second-order polyno-
mial. At a given pressure-layer and wave numbéin cm—1
units), the optical depth for the a geneitie molecule is com-
puted according to
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analysis will be referred to as AMSR+AVHRR OISST in the
remainder of this paper. The AMSR+AVHRR OISST analy-
sis has been downloaded from the web#jtg/eclipse.ncdc.
noaa.gov/pub/Ol-daily-v2/NetCDF/2010/AVHRR-AMSR/
Finally, we have also used data collected at the Evor
ground site (38.55N, 8.01° W) located in southern Portu-
gal and maintained by the EUMETSAT Satellite Applica-
tions Facility on Land Surface Analysis (LSA SAF) team.
The area surrounding the site is dominate@mercusvood-
land plains and is fairly homogeneous at the SEVIRI spatial
scales Dash et al. 2004. The ground station is equipped
with a suite of radiometers (9.6-11.5um range) providing

temperatures of tree canopies and of ground in the sun and 2 )
in the shade. These are combined to provide a compositgs.; = gi an,j,iT’, (1)
ground temperature representative of SEVIRI pixels, consid- Jj=0

ering that the fractional area coverage of canopies is 0.32 . .
(Trigo et al, 2008, It is worth mentioning that the ground whereT is the temperature;; the molecule concentration
9 ’ ’ .g 9 andc, ;; with j =0,1,2, are fitted coefficients, which are
and the treetop canopy present contrasting temperatures par-, 7 . .
. . . ; . actually stored in the optical depth lookup table.
ticularly during daytime, when differences can easily reach . . .
. For water vapor, unlike other gases, in order to take into
15K. As a consequence, the composite ground temperatures . -
i e ; ) . account effects depending on the gas concentration, such as
are fairly sensitive to the fraction of trees being considered. ; - .
For this purpose, the area surrounding the Evora station Waself-broadenlng, a bi-dimensional lookup table created by
purpose, 9 Masiello and Seriq2003 is used. Thus, for water vapor,

carefully characterized using very high resolution IKONOS . o L : ) ]
satellite imagesKabsch et al.2008 Trigo et al, 2008. In identified withi = 1, the optical depth is calculated accord

addition, our Kalman Filter retrievals for the pixels closer to Ing to

Evora are also compared with the operational land-surface 2 '

temperature product provided by the LSA SAFrditas et Xo1=q1| Y coj1T/ +co3141 |- (2
al., 2010. Jj=0

The subscript indicates the monochromatic quantities. In
2.1 Forward models:o-IASI and ¢-SEVIRI the case of hyperspectral instruments, such as IASI, the
monochromatic optical depths are computed and parameter-
Forward calculations for the SEVIRI channels 2—8 (see Ta-ized at the spectral sampling interval of fam .
ble 1) are obtained by the-SEVIRI code that we have de- This spectral sampling is much too fine for a band instru-
veloped specifically for this study. ment such as SEVIRI. In the case of SEVIRI, the spectral
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sampling can be averaged and sampled at a rate dfc ! when each time is considered independent from past and
without sacrificing accuracy. Also in this case the optical future measures. L&k, be the radiance vector

depth can be parameterized with a low-order polynomial, and .

its coefficients are obtained as explained below. R: = (Ri(01), ..., Ri(om))" , ®)

d F?r: ez;\](_:hhspemss, we car: d_eflr:je 6_‘:;] equwalte?t :)ptlcal with m the number of spectral radiances, and where the su-
epih which can be parameterized With respect fo emper%erscriptT stands for transpose. Under the assumption of

tLIJEre 'q the dséamc(:a We% we d(t)hfoi monocr:]romelltl)c qgar.]é'tt;]esmultivariate normality the retrieval problem can be seen as
(Egs. 1 and2). Considering the larger channel bandwi S one of variational analysis in which a suitable estimation of

of the SEVIRI measurements, averaging is applied over th‘:‘[he state vector is obtained by minimizing the form (see e.g.,

spectral wave-number band of each channel. This averagin% . o
T " _ . tier 1997, Tal 1997 Tarantola1987 C
is identified by the angular bracket$. The equivalent opti- ourtier alagrand arantoia anssimo

cal depthis etal, 2009:
1 _
2 | min> (R, = F ()" $;* (R = F(v)
X(o),i =4qi ZC(a),j,iTj, (3) 1
j=0 +5@=va)’ S tw—va), (6)

where the equivalent coefficients;) ;; with j =0,1,2,are  \yhereF is the forward model functiony is the atmospheric

; —1 . . ) . .
coarse sampling of 1¢ cm™?, vector, of sizex; S, is the observational covariance matrix, of
) sizem x m; andS, is the background covariance matrix, of
N T = —loallexo(—y. 1. 4 sizen x n. qu_Jat|on 6) is gommonly linearized and a C_;auss
qi ;) (@), g[(exp(—xo.))] @) Newton iterative method is used to solve the quadratic form

Because of this down-samplirgSEVIRI, which is based min} (i —Kx)T S 1 (y, —Kx)
on the coarse-mesh lookup table, rum4.000 times faster * 2

than o-1ASI. As the parent codes-1ASI, o-SEVIRI can +@x—xo)" s;l (x —xg), )
compute the analytical Jacobian derivative for a large set of
surface and atmospheric parameterss and(7T, Q, O). whereK is az;gv) ooy ¥t = Ry — Rog; andx is v — v,; x4 =

v, — ,. It should be stressed that, formally, the state vector,
v can be thought of as a 3-D geophysical field, and not nec-
essarily of a vector in one dimension (altitude coordinate).

Before showing the retrieval problem for the pair of surface _ The formal solution of Eq.7q) is well established (e.g.,
parameters7s, ), we briefly review the concept of the op- 1arantola1987 Rodgers2000.
timal estimation in the general context of data assimilation Te—l -1y et
(Loreng 1986 Talagrand 1997 Wikle and Berliney 2007 ~ * =%¥a + (KTSK +_Sf ) KISy —Kxa) 8)
Nychka and Andersqr201Q Rodgers2000, which allows S = (K'S/1K + 5.1
us to describe the retrieval methodology n .'ts gent_aral SPaY1 the context otlata assimilationx, is normally the fore-
tiotemporal framework and also to put in evidence its com- : : : .
v X cast at time, andS, is the forecast error covariance matrix.

monalities with the KF methodology. The estimationy, is referred to as the analysis

For the benefit of the reader, we will try to stay as close ' '
as possible to the notation usedRindgerg2000, therefore 3 5 The Kalman filter
the symbol and subscriptwill be used to denote the obser-
vational covariance matrix and hence the noise term affectingrhe Kalman filter was first developed Byalman(1960 and
the spectral radiance. For emissivity we will use the symbolKalman and Bucy1961) in an engineering context and as

3 The retrieval framework

€, which should not be confused with a linear filter. Its derivation from the Bayes formalism has
] o been shown by many authors (e.g., see the revieWlxe
3.1 Static a priori background and Berliner 2007).

indexed by integers,= 1, 2, ..., although handling unevenly
spaced times does not add any fundamental difficulty.
The derivation of the thermodynamical state of the atmo-
sphere, at a given timg given a set of independent obser- | R, = F(v,)+e¢,
vations of the spectral radiancg, (o), is well established { vir1=Muv, 4+,

theobservation equatiofor data model) and th&tate equa-
tion (or dynamic model or system model), respectively.

©)
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HereM is a linear operator and the noise model tegn, because of the nonlinearity of the forward model and a crite-
has covarianceS,. The remaining parameters appearing rion to stop iterations. We use the usy@l criterion. In fact,

in Eq. ©) have the same meaning as those introduced irunder linearity, the value of twice the quadrasidEq. 12)
Sect.3.1 KF is intrinsically linear, therefore the observation at the minimum is distributed as ¢ variable withm de-
equation has to be linearized in order to write down the op-grees of freedomTarantola 1987). A x?2 threshold,xt%, at
timal estimation for the state vector. With the same notationthree sigma confidence intervals, can be then obtained ac-
we have used until now, we have the linear KF form cording toxt% = m + 3/2m. Therefore, the iterative proce-

dure is stopped when
{ = Kx +e (10)

vii1=Muv, 49,41 x2=2x58<xé. (13)

where we use the notatidf, for the Jacobian to stress that 3.2.2 The KF forecast step
it depends on time,

It should be noted that we assume that both the noise termi) Our notationt = o —v, andx, = 9, — v, so that the for-
&, andy, are independent of the state vector. mal KF estimate for the state vector is

-1
3.2.1 The KF update step or analysis b =v,+ (KfS;th + S;l> KIs: 1y, —Kixa). (14)

Under the same assumption of multivariate normal statistic§-or the forecast step the KF assumes that the process evolves
as that used in Sec3.1, we have that the optimal KF esti- in a linear way, according to the operatdr, therefore, we
mate ¥, at timer is given by (e.g.Wikle and Berliney2007)  can obtain an estimate of the forecast at tirsel, standing

at timer, through the linear transform

A -1
£ =x4+ (KISTIK, + 570 KIS (3 — Kexy)

X i b, =M, (15)
S =(Kfs7'K+51)"

(11)
where the superscript stands for forecast. The forecast has

We see that the optimal KF estimate fris formally equiv- ~ Uncertainty given by
alent to that obtained by the variational or optimal estimation _ .
approach in SecB.1 We recall, once again, that in the con- S, =MSM’ +5, (16)
text of data assimilationx, is normally the forecast at time
t, andS, is the error forecast covariance matrix. The estima-
tion, x;, is referred to as thanalysisat time ¢, which has
covariance matrix given b@,

One important aspect of the formal solution is that the
analysis update depends only on the data at tiraed not ~f Af
on that at previous times. This property is referred to as the?e = Vi41> S=S,

Markov property. In fact, the formal solution for the anal- , s
. . : and we are ready to obtain the new analygjs; .
ysis does not depend on the dynamical system directly. We . ; .
can see that the expression in Efjl)(does not contain the An important concept to draw from this sequential updat-
ing is that spatial information about the distributiorwpican

operatoM. be generated from the dynamics of the process. In fact, ana-

The above property is also referred to as the regularizatioqyzing the forecast covariance matrix (), it is seen that

property of KF. New data comes in aaind the KF updated .°: ) ! .
. . o . it is based on the previous forecast covariance matrix and also

state estimate is the minimizer of the quadratic form or cost . . . . . .
inherits the dynamical relationship from the previous time.

whereS, is the covariance matrix of the noise tegn(see
Eq.10).

As soon as new data comes in at time 1, the forecast
becomes the background,

(17)

function, s: Thus, in the situation of assimilation for a space-time pro-
1 —— cess, the spatial covariance for inference is built up sequen-
§=minz (ye —Kix)” 570 = Kix) tially based on past updates with observations and propagat-
1 ing the posterior forward in time as a forecast distribution.
t3 o —xa) S = x4) . (12)  We stress that this spatial information is the difference or er-

ror between the conditional mean and the true field and is not
However, an important distinction regarding data assimi-the covariance of the process itself.
lation is thatS, is potentially generated from the process and However, the goodness of this spatial information mostly
not from an external spatial model. In f&gt is iterated with  relies on the quality of the physics we model with the op-
the process, as will become clear in examining the forecaseratorM. Typically, the forecast step is completed by a de-
step for the linear KF. It is important here to stress that theterministic, physically based model. In this case, the spatial
minimization of the form {2) needs an iterative approach information has value. However, in a case in which we want
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the problem driven from the data, the model can be very sim-over land, which is strongly influenced from the daily cycle.
plistic and inherently inadequate to describe the real-worldFor sea surface the assumption of a low time variability on
process. In this case, spatial information has to be providedime scales of several hours is good bothfgande.

externally through a proper definition &f. With this in mind, let v=(e1,...,em, Ts)Y be the
emissivity—temperature vector, a suitable dynamical equation
3.3 A formulation of the emissivity/temperature is then a simple persistence

retrieval with KF
Vi1 =M +1,,, (23)

As stated at the beginning of Se8t.the general KF formal-
ism has been described and presented in a full 4-D settingvhere, according to our notation (see S&c), y, is a noise
In this section we will deal with an application to thi&s,¢)  term with covariance$,, andM is the identity propagation
problem where we apply a strictly temporal only method.  operator.

To begin with, we introduce a transform for the emissiv- We know that the persistence model of Eg3)(is not
ity, which allows us to constrain the retrieval to the physical physically correct since it cannot reproduce the strong daily
emissivity range of 0—1. Letting be the emissivity at any of ~ cyclic behavior offs expected in clear sky for land surface

the channels, we consider thugit transform (Gottsche and OleseA009 Menglin and Dickinson1999
. Menglin, 2000. It could be a fair model for sea surface,
e=log—, (18)  where thermal inertia of water strongly damps the effect of
1-e the solar cycle; however, it cannot represent a good model
which has inverse for land surface.
Nevertheless, it has to be stressed that within the con-
€= LI'(@_ (19) text of the Kalman filter methodology we can accommo-
1+exple) date our knowledge about the adequacy of the motietie

and Berliner 2007). In practice, provided that the parame-
ters are strongly constrained by the data, the precise form of
the evolutionary equation is not important for the estimation
problem as long as the error covariance appropriately reflects
the uncertainty of the current state estimate. To this end, an
important role is played by the stochastic noise covariance,
IR 8—Re(1— O (20) S,. By properly tuning the stochastic noise covariance, we
de e ’ can have a retrieval which is either dominated by the data
whereR is the radiance at a generic channel. ET?(;(;I ;g:(’qg‘a(igil inadequate), or the state mod®] £ 0,
tog;,edl%ne;zzsbigﬁlforward model, at time with respect _ SEVIRI atmo_spheric windlo.w chanpels are strongly dom-
s inated byTs. This is exemplified in Fig4, which shows a
y, = A8e, + B8 Ty, (21) simulation of th_e daily_ evoluti_on ofs for a desert site and
the corresponding radiance signal at channel 7 (12 pm). The
with §e = e — e, of dimensionn x 1, 8T, = Ty; — Ts1o. The  Simulation has been obtained using the daily cycle model de-
matrix A, is the emissivity Jacobian, a diagonal matrix of veloped byGottsche and Olesef2009 on the basis of in
sizem x m, and B, is the surface temperature Jacobian, asitu observations made at a station in the Namib desert. The
vector of dimensiom: x 1. We have that the size of the ob- model fits the data with an accuracy sf1-2 K, therefore
servation vectory; is m x 1, the dimension of the Jacobian theTs evolution shown in Fig4 reflects a realistic situation.

The transform maps 0-1 into the intenjatoo, +00] and
vice versa. Therefore if we work with the variakleretrieval
positiveness foe is ensured.

In order to work with the parameterwe have to properly
transform the Jacobian. It easily follows from E§8) that

K:; = (A, B;) ism x (m + 1), and that the state vector, The corresponding radiance has been obtained threugh
SEVIRI. The state vector needed for the computation of the
de radiance has been obtained from the ECMWEF analysis for a
der desert site.
=1 - | (22) Another way to assess the strong dependence of the SE-
Sem VIRI atmospheric window channels on temperature is to
8Ty compute the indexD between two consecutive timesand

has dimensionm + 1) x 1. As regards the state or model t+1, defined according to

equation for emissivity, an evolution equation is straightfor- B/(0;) + B4+1)0; Tsii1— Ts:

ward if we consider the high repeat rate of SEVIRI observa-P = > X R —R@) (24)
tions (15 min). This leads us to assume that the evolution of e e

€ has a low variability on a time scale of few hours. This is wheres; denotes the wave number of a generic SEVIRI
particularly true for emissivity, but much less for temperature channel. This index is the ratio of the derivative Jacobian of
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Temperature forcing Radiance response At this point we have defined all the components of our
60 0.15[12 um (Ts, €) problem which are needed to run the Kalman filter.
50 3 |z m The flow of operations is here summarized for the benefit of
T 40 j:; 0.1 10.8 um the reader. First, obtain the analysis update through®. (
v 30 g /\ second, compute the forecast with Eg5) third, find the
20 Ef 0.05 A forecast covariance matrix through Ef6); and, finally, de-
8.7 um fine the forecast to be the new background (Efj.and return
1% 10 20 % 0 20 to Eq. (L4) for a new cycle.
Time (hour of the day) Time (hour of the day) Further details of how we build up the above ingredi-
2 1.08 ‘ ‘ ‘ ‘ ents are given below. To begin witBe is derived from the
< 1 ©) | UW/BFEMIS database (see Seg). Its definition and cal-
§ ! — 12um culation is space-time localized. For a given month and SE-
£ 095} ———10.8um 1 VIRI pixel location, UW/BFEMIS yields ten different sam-
102 ——8.7um ples of the emissivity vector from ten different years. The
0.9 5 10 15 20 25 UW/BFEMIS emissivity-vector samples undergo thogit
Time (hour of the day) transform (see EdL8) and are used to compute the covari-

ance matrixSe. It could be argued thase built up on ten
samples implies an unrealistically large statistical uncertainty
Ylor the covariances. This is true and reflects the present stage

(c) shows the derivative rati® (see text for details) correspond- of our k_nowledge_: about surface emissivity. Because of this
ing to the three SEVIRI atmospheric window channels(dpr.u. uncertaln_ty We_W'” be forced o gpply some_what ad hoc_fur-
stands for radiance units; 1r.u. = 1 W(cm 1)~1sr L. ther manipulations of this covariance matrix to get realistic
retrievals.

An example ofS for the set of seven SEVIRI channels
the surface temperature to the increment of the radiance du@ to 8 in Tablel), for the month of July and for a SEVIRI
to the variation of the surface temperature within the time pixel corresponding to a site in the Sahara desert is shown in
interval (¢, 4+ 1). Because of the meaning of the Jacobian, Table2. S, shown in Table makes reference to the emissiv-
this index has to be close to 1 in case the channel stronglyty vector ordered from longest to shortest wave number. The
depends orfs. Note that the second factor in EQR4) is  element (5,5) corresponds to the channel at 8.7 um, which
the finite-difference-based calculation of the inverse of thejs in the middle of the quartz reststrahlen band and hence is
Jacobian itself. For the case shown in Hg, b, Fig.4c characterized by the strongest variability.
shows the indexD for the three SEVIRI atmospheric chan-  The covariance matri$,e is derived fromSe with a scal-
nels. From this figure it is immediately seen that the radianceng procedure. This is justified because of the need to scale
time-behavior is completely dominated by the time-evolution down S, in order to correctly take into account the expected
of 7s. This is a helpful situation because, at least for temper-variation of emissivity on a time scale comparable to the SE-
ature, we can design a Kalman filter which is strongly drivenv|R| repeat time of 15 min. However, this is a rather ad hoc
by the data. inflation/deflation procedure, which is performed on the ba-

To this end, we first clarify how we build up, andS, on  sis of trial and error until we yield realistic retrievals.

the basis of the related matrices for emissivity and surface The covariance matri is scaled according to the fol-

Fig. 4. Simulation of the response of the SEVIRI atmospheric win-
dow channels 7, 6 and 5 (12 um, 10.8 um and 8.7 um, respectivel
(b) to the forcing of the daily temperature cycle showrgah Panel

temperature. _ . o lowing procedure. LeSe(i, j); i, j =1,...,m =7 be the el-
We do not consider correlation between emissivity andements ofSe. The correlation matrixCe is defined according
surface temperature; therefore, to
Spe. O ) C o Se(l, ) R _
== N 5 C(”J)_ — — le_la'--am_7’ (27)
S ( 0. 8,1, @3) = DS )
and and the matrixSe is scaled according to
Se’°> Selisi) _ Selio))
Saz( ) (26) S(S)(i N e\t el/, /] PR
)= — X —Celi, j);
0. 8 e F20 "G
whereS,e is the covariance matrix of the emissivity stochas-  ; j =1 ... m=7, (28)

tic term; S,r, is the variance (scalar) of the surface-

temperature stochastic ter®; is the initial background co- WhereSff) is the matrix scaled by the vector of scaling fac-
variance matrix of the emissivity vector; afg, is the initial tors, f. The scaling operation above preserves the correlation
background variance (scalar) of the surface-temperature pastructure and in practice we consider a constant scaling fac-
rameter. tor, f2, that does not change along the diagonal.
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Table 2. Example of the matrixSe for a SEVIRI pixel corresponding to a desert site (30.865.56 E). The covariance matrix has been
computed for the SEVIRI channels 2 to 8 in Talhland makes reference to the emissivity vector ordered from longest to shortest wave. The
element (5,5) corresponds to the channel at 8.7 um, which is in the middle of the quartz reststrahlen band and hence is characterized by th
strongest variability.

Column
Row 1 2 3 4 5 6 7

0.0273 0.0265 0.0136 0.0070 0.0109-0.0025 0.0053
0.0265 0.0262 0.0137 0.0068 0.0100-0.0025 0.0057
0.0136 0.0137 0.0075 0.0037 0.0056-0.0017 0.0032
0.0070 0.0068 0.0037 0.0023 0.0028-0.0008 0.0012
0.0109 0.0100 0.0056 0.0028 0.0067-0.0018 0.0018
—0.0025 -0.0025 -0.0017 —-0.0008 —-0.0018 0.0008 —0.0007
0.0053 0.0057 0.0032 0.0012 0.0018-0.0007 0.0017

NOoO o~ WNBE

We assumes,e = Sg). As already mentioned, the appro-

} g g g 60 Tempera}ure
priate value off has to be tuned in simulation. After ex- .

. . 8 . 551 Retrieval
tensive simulationsSerio et al, 2013, we have found that o Initialization Point
f = 10 is appropriate for this case study. 501 True I

As far asTs is concerned, based on the evidence of Bjg. 45
we want to stay closer to the data than to the model. We havi 40}
that a variance of 1 Kfor the initial background and stochas- < 35
tic terms Sz, and S, 7, respectively, provides a balanced re- = 3!
trieval. In other words, at least for land surfasgy, does not -
need to be downscaled with respectso. sl

This can be seen in Fi§, where we show the results of a
retrieval exercise obtained in simulation for the case of deser 157
site (seeSerio et al, 2013 for full details). The case shown or o
uses a persis_tence model for the statg egyatiqn qf both emi: % s 10 15 20 25 20
sivity and skin temperature. For emissivity this is correct, Time (hour of the day)
since the simulation assumes a constant emissivity at eac 4

. 1, Channelat 12 um Retrieval _
SEVIRI channel. Conversely it is not correct for the surface z o Initialization point
temperature, whose true value follows the daily cycle shownz %98 True
in Fig. 5 £ 081 ]
g.o. & ‘ ‘ ‘ ‘ ‘

The example shown in Figs and the error analysis in 0-945 5 10 15 20 25 30
Fig. 6 allows us to illustrate the property of the KF to ac- . Channelat 10.8 um' ™ (hour of the day) Retrieval
commodate the knowledge of the adequacy ofdétermin- £ 0'967 ° Initialization point
.. . A . ‘w7 True
istic model. As said before this is obtained by properly tun- .2 5g,l 1
ing the stochastic term. In the example shown in Bighe w92 ‘ ‘ ‘ ‘ ‘

: : 0 5 10 15 20 25 30
stpchas'tlc variance fdfs has been set to 1K Be'cause of Channel at 8.7 um Time (hour of the day) |
this choice, we correctly follow the data and retrieve the true > 08 ‘ ; ‘ ‘ Retrieval _
value of the surface temperature within the accuracy deter 5 | ° 'T"r'S:"Zﬁ“O” point
mined by the a posteriori covariance matrix, thatif.2°C. E
The_same conclusion holds for emissivity, which is rgtrieved 075 5 10 15 20 25 20
within an accuracy ok 0.005. For the stochastic variance, Time (hour of the day)

we can also prescribe a value just equal to zero, which will

result in a retrieval highly dominated by the model. The re- Fig. 5. Retrieval exercise using simulations with a variance of the

sults are presented in Fig. We see that after some iterations, Stochastic term fof's equal to 1K and f = 10. Upper panel: skin

the retrieval just follows the (inadequate) persistence modeltemperature retrieval; lower panel: emissivity retrieval at the three
A . . . . SEVIRI at heric wind h Is.

The initialization point for skin temperature in both exercises almospheric wincow channe’s

is the true temperature minus@. Note that we need to spec-

ify only the initialization point at = 0, after that KF yields

the retrieval on the basis of the data points and model alone.
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The results shown in Fig$.to 7 justify the use of a sim- Temperature
plistic persistence model fdfs because the data — that is, ° ‘
observations — strongly constrain the phenomenon under in- 4
vestigation. We can get to the same conclusion by observing 3
that, even by prescribing a stochastic variancetaqual to A

1
0

O Initial difference
Retrieval-True
tlo

1 K?, we obtain a precision for the final estimatexoD.2°C.

This finding implies that the a priori information fd@k has %
little to no impact on the final estimate, which is therefore =
largely dominated by the data. -1r
The retrieval exercise shown in Figsto 7 allows us to -2r
address another important issue: how the time constraint im- _al

posed with the persistence model improves the retrieval in
comparison to a scheme where this constraint is not im- ‘ ‘ ‘ ‘ ‘
posed at all. If we try to solve théTs, ¢) retrieval problem 0 5 10 15 20 25 30
within the usual context of least squares estimation with a Time (hour of the day)

static background, we get a retrieval covariance matrix with

Channel at 12 um

a strong anticorrelation betwedi ande. This anticorrela- . . ‘ ‘ o Initial difference
tion is due to the relationship of these two parameters within < 0 ————————r fel“('ye"a"““e
the radiative transfer equation and makes their effective sep- -0.02 ‘ : : ‘ — '

. . . . 0 5 10 15 20 25 30 35
aration unpractical. To exemplify this effect, we have run the Channel at 10, T (hour of the day)

. . . . annel al . m

same retrieval exercise shown in Figbut now withM = 0. 0.02 ‘ 5 ‘ ‘ SETpT—
In this way, the retrieval does not evolve through the state < o VYeYem Retrieval-True
equation and the surface parameters are estimated on the b 0.02 ‘ ‘ ‘ ‘ tlo
sis of a static background. The error analysis for this exercise o 5 10 15 20 25 30 35
is shown in Fig8. The anticorrelation effect is soon evident. 0,04 Channel at 8.7 um T (hour ofthe day)
We find thatTs is biased significantly low ane significantly 002f ° © Initial difference
h' h C H F 6 th F 8 I I d : or =2 Retrieval-True
ligh. Comparing Fig6 with Fig. 8, we can clearly iden- —0.02) 1o
tify the impact of temporal information propagation from the -0.04; s 5 " - s ” =
KF versus the case without this propagation. The comparison Time (hour of the day)

confirms the merit of the KF application for this problem.

It is also noteworthy that for land we have empirical Fig. .6..Err0r analysi; for the retrieval exercise_shown in BigThe _
state models, which can reproduce the surface temperatut@ec's'on c_>f Ihe_ retrieval (square root of the d_lagonal of the covari-
daily cycle with high accuracyQottsche and Olese009 ance matrixSy) is shown by thet1o tolerance interval.

Menglin and Dickinson1999 Menglin, 2000. Therefore

the question may be posed as to whether or not we can im-

prove the results by using a more adequate moddifcrhis pixel field of view angle, we generate the emissivity vector
exercise has been performed3ario et al(2013, where the  for wind speed in the range 0-15 misand with a step of
temperature daily cycle was modeled with a second-order aul.5ms™. In this way we have 11 emissivity vectors, which
toregressive process. However, no improvement was foundre used to define background vector and covariance. Again,
with respect to a simple persistence model. The fact is thathe resulting covariance is downscaled by a fagtes 10.

the daily cycle is reproduced in its very fine details by the The validity of the persistence model for sea surface has
data, as it is possible to see, e.g., from Fig. 4. Therefore, fobeen checked directly on the basis of real observations, be-
the particular case of retrievinds, €), there is no essential cause for sea surface the ECMWF analysis is credited with
need to include the daily cycle information though an exter-an accuracy withiat1 K. Figure9 exhibits the results for the

nal model. However, it has also to be stressed that this magea target area shown in Fyand for 31 July 2010. We see
not be the case, e.g., for atmospheric parameters where tthat a stochastic variance term below 0.Z5&nds to have a
satellite infrared observations are less adequate and need better agreement with the ECMWF model, which leads us to
be assimilated in a system with an accurate dynamical modekonclude that for sea surface a persistence model is effective

Finally, we stress that for sea surfaces a simple persistenceot only for emissivity, but also fofs.
model is accurate also for the skin temperature, and there- In passing, we also note from Fi.that the skin tem-
fore S,r, needs to be downscaled with respectStg. We  perature reaches a maximum around 15:00 UTC. The maxi-
useSz, = 1K? and obtainS, 7, again by scaling with a factor mum around 15:00 UTC is in agreement wilentemann et
f =10, that isS,7, = 0.01 K2. al. (2003, who showed that during the daytime, solar heat-

For the sea-surface emissivity covariance we use Maing may lead to the formation of a near-surface diurnal warm
suda’s modellasuda et a).1988. For any single SEVIRI layer, particularly in regions with low wind speeds. Analysis
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Temperature 5 Temperature
Retrieval ar
501 O Initialization Point| { 3l O Initial difference | 1
True | Retrieval-True
2 tlo
401 B 1L
~ <
O - Or A
< 30t 7 < Wi
=7 -1y
_2 L
201 1
_3 L
10} 5 | -4f ©
_5 L L L L L L
0 5 10 15 20 25 30 35
0 . . . . . Time (Hour of the day)
0 5 10 15 20 25 30
Time (hour of the day) 0.04 Channel at 12 um ‘ ‘ ‘ ,
0.02 ——— o Initial difference
5 : : Oor Retrieval-True
O Initial difference -0.02 tlo
. -0.04 : : : :
4r Retrieval-True H 0 5 10 15 20 25 30 35
tlo Ti H f the d
3l i 0.04 Channel at 10.8 um ime (Hour of the day)
0.02| e S © Initial difference
2r 1 b or Retrieval-True
-0.02 tlo
1r B -0.04 | | . .
o 0 5 10 15 20 25 30 35
< of b Time (Hour of the day)
— Channel at 8.7 um
< 0.04 T T T T
-1t 1 0.02f w% o Initial difference
a or Retrieval-True
ol , -0.02f tlo
_004 L L L L
sl | 0 5 10 15 20 25 30 35
Time (Hour of the day)
-4 o |
Fig. 8. Error analysis for the retrieval exercise similar to that shown
o 5 10 15 20 25 30 in Fig. 5, but now with the propagation operatdr= 0. The vari-
Time (hour of the day) ance of the stochastic term fd is equal to 1 K and f = 10.

Fig. 7. Retrieval exercise similar to that shown in Fig. 5, but now

the variance of stochastic term B is equal to 0K and f = 10. arises concerning the potential bias on the retrieved param-

eters(Ts, €) resulting from the uncertainty of those not re-
) ) ) o trieved, that iT, Q, 0).
of TMI (the Tropical Rainfall Measuring Mission (TRMM) e stress that in our scheme the (non-retrieved) atmo-
Microwave Imager) and AVHRR skin t(_amperature have ré-spheric state vectofT, Q, O) is obtained from the space-
vealed that the onset of warming begins as early as 08:0@me collocated ECMWF analysis, which, especially for arid
and peaks near 15:00 with a magnitude of Z&luring fa-  agions such as that analyzed in this paper, could be signifi-
vorable conditions. cantly in error in daytimeNlasiello and Serip2013.
The assessment of the bias on the retrieved (#ire)

which arises from a non-perfect knowledge of the atmo-
spheric state vector, can be performed through a linear per-
turbation analysis by dealing with a generic atmospheric pa-
meter, sayX, as a interfering factor.
Within the context of optimal estimation, (e.dqrpdgers
000, which (as shown in Sec8.2.]) applies to any iter-

3.3.1 Sensitivity to the atmospheric state vector

For the problem of T, ) retrieval, we consider SEVIRI at-
mospheric window channels alone, namely channels 4, 6, an
7 (see Tablel). However, in practice atmospheric window
channels can have a contribution from the atmospheric pa,
r_ameters(T, Q, 0) which give the major emission contribu- ation step of the Kalman filter methodology, the sensitivity
tion between 8 and 12 pm.

. . of the retrieved vecton, to a differenceAX = X — X, of
In the present scheme, the retrieved state vector mclude&m given atmospheric parametaf, with respect to the ref-

(Ts, €) al(_)ne, whereas the principal atm(_)spheric parameterg, oo statX, assumed in the forward model calculations
are qbtalned f_ror_n the EC_MWF analysis and are not fgr-Can be computed according Brissimo et a).2005
ther iterated within the retrieval scheme. Thus, the question
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27 with S¢ obtained from the UW/BFEMIS database. It should

— Skin Temp. stochastic variance term: 1 K be stressed th&, defined in Eq.80) gives the less favorable

Skin Temp. stochastic variance term: 0.25 K | situation. In fact, as iterations evolve, the matgixevolves

2ol o E(k:‘”Mx;‘;;‘y";L‘as“c variance term: 0.0 1K | as well according to Eq16) and its norm tends to decrease.
In this situation, it can be showarissimo et a].2005 that

o55] ] the interfering effect also tends to decrease. Thus the calcu-

lations we are going to show should be viewed as an upper

25t 1 boundary to the impact of interfering atmospheric factors.

With this in mind, Table3 shows the impact over the re-
trieval of the interfering factors(7T, Q, O). It can be seen
al | that even in this least favorable case, the impact is modest

and much lower than the precision of the retrieval. As ex-
235} 1 pected, the impact is larger during daytime, although mostly
affecting the second decimal digit for skin temperature and
287 . 0 15 20 P below the fourth decimal digit for emissivity.

Times(hour of the day) Based on this result, we have implemented ¢iig ¢)-
version of the Kalman filter methodology by considering
the simultaneous use of channels 4, 6, and 7. The retrieved
state vectors are constructed from surface temperature and
emissivity alone. We do consider atmospheric parameters
in the state vector. These come from space-time collocated
ECMWEF analysis; however, they are not retrieved.

It is worth mentioning that the conclusion reached in this
section applies to our retrieval scheme and does not have a
-1 - . L ;

Ab = (Kng—lK _i_sl;l) KTS;lKXAX, (29) general validity. The |m.pac't of possple interfering fagtors
depends on the regularization determined by the m&yix

whereK is the Jacobian matrix of the retrieved vector and @nd tends to attain its largest value in the lirgjt* — 0

K x is the Jacobian matrix of the interfering factor computed (Carissimo et a).2003, that s, for the case of unconstrained

at the reference stafg,. least squares.

Equation 29) can be used to check the impact of possi-
ble biases in the ECMWF analysis on the retrieval for sur-
face emissivity and temperature. To obtain realistic situa-4 Results
tions we have used a couple of day—night IASI spectra (see
Fig. 10) recorded on 10 July 2010 over the Sahara deserf-1 Assessing the performance of the
at two close locations which are included in the target area ~ €Missivity/temperature retrieval
shown in Fig.2. These two IASI spectra have been inverted o o .
for (Ts, ¢, T, Q, O) using the so-called-IASI package Am- We begin with the description of results obtained by process-
ato et al, 1995 Masiello and Serip2004 Carissimo et aj. N SEVIRI data at the three small test areas shown inZig.
2005 Grieco et al. 2007 Masiello et al, 2009 Masiello and With this first series of results, we want to address issues such
Serig 2013. The IASI retrieved atmospheric state vector is 85 the precision of the method anq its convergence properti.es.
compared to the ECMWF reference state vector in EQy. Results obtalngd frqm the'analy5|s of the full target area will
We see that large differences arise in daytime, mostly conP€ Shown later in this section. _
cerning the lower troposphere. For nighttime we have a good The Kalman filter has been applied to SEVIRI atmo-
agreement for the surface temperature (303.9K of ECMWESPheric channels alone. The:'se are the chan.ne.ls. at 12, 10.8
and 303 K of IASI), whereas for daytime we have a disagree-2nd 8.7 um. The corresponding channel emissivity and the
ment which is as large as 12 K (310.1 of ECMWF and 321 7Surface temperature have been simultaneously retrieved with

2451 4

Skin Temperature ¢ C)

Fig. 9. Kalman filter retrieval analysis for skin temperature as a
function of the stochastic variance term ffg. The retrieval has
been spatially averaged over the grid box of siZ>00.5 degrees
shown in Fig.1.

of IASI). a time resolution of 15min. This time step also coincides
We can take the differenc&as) — X ecmwr, as a realistic with the sequential updating rate of the fllter.
departure of the ECMWF analysis from ttiee atmospheric For the sake of clearness, Talesummarizes the many

state vector and compute, through E28)( the resulting bias settings of the filter. Note_that in computing background vec-
over the retrieved surface emissivity and temperature. In dofor and the related covariance matrix from the UW/BFEMIS

ing so, we have useg, defined according to database, we have not used the data for July 2010, which are
used for comparison with our results.
Se, O Figure 11 allows us to exemplify the precision of the
Se = ( 0, 1.K2>’ (30) methodology. The retrieval has been obtained for one single

Atmos. Meas. Tech., 6, 36138634 2013 www.atmos-meas-tech.net/6/3613/2013/



G. Masiello et al.: Kalman filter surface temperature and emissivity retrieval from geostationary platforms

o
o
>

Radiance Spectrum (r.u,)
o
o
=3

Pressure (hPa)

— (32.90° N, 7.50° E); UTC: 10-Jul-2010 09:35:37|
— (30.90° N, 5.80° E); UTC: 10-Jul-2010 20:52:43|

1000

1500 2000
wave number (cm %)

2500 3000

+ Daytime ECMWF
+  Nighttime ECMWF
Daytime IASI

— Nighttime 1ASI

d)

Pressure (hPa)

Pressure (hPa)

Daytime IASI

+ Daytime ECMWF
Nighttime IASI

+ Nighttime ECMWF

100
200

300
400
500
600
700
800
900

1000

240 260 280 300
Temperature (K)

220

+ Daytime ECMWF
+ Nighttime ECMWF
Daytime IASI
— Nighttime 1ASI

1007

200:

300}
1Y
400\
5001 X
600
700
800
900

3625

. . . . 1000 . .
0 0.2 0.4 0.6 0.8 1 0 2 4 6
o, mixing ratio (ppv) x10° H,0 mixing ratio (g/Kg)

Fig. 10. (a)Day—night pair of IASI observations over a Sahara desert site (1r.u. = I9sm? (cm~1)~1); (b) temperature retrieval and
comparison with the space-time collocated ECMWF analysjstH>O retrieval and comparison with the space-time collocated ECMWF
analysisy(d) O3 retrieval and comparison with the space-time collocated ECMWF analysis.

day and one single SEVIRI pixel from the Sahara desert tesTable 3. Potential bias affecting the retrieval of surface emissivity
area, and therefore corresponds to the highest space-time re®d temperature due to atmospheric parameters. The bias is dimen-
olution of the meth0d0|ogy_ It is pogsib|e to see that evensionless for emissivity and in K for the surface temperature.

for a time resolution of 15 min, temperature is obtained with
a precision of~ +£0.2K and better, whereas emissivity is
obtained with a precision better than40.005. The emis-
sivity retrieval shown in Figll1 corresponds to the channel
at 8.7 um. This channel is in the middle of the quartz rest-

Interfering atmospheric parameter

Retrieved parameter Temp. profile @ profile  Ozone profile

Day

] . . Emissivity at 12 pm 0.0000 0.0000 0.0000

st_rahlen band and has the higher contrqst in the atmospherlcEmissivity at 10.8 um 0.0000 0.0000 0.0000
window. From Fig11, we see that the emissivity tends to fol-  gnmissivity at 8.7 um 0.0000 0.0001 0.0000
low the daily cycle, with larger values obtained during night-  Surface temperature 0.0013 0.0021 0.0004
time/early morning. Night

This is better evidenced from the analysis of the long se- R 0.0000 5.0000 5.0000

_ . . missivity a pm . . .

quence of clear sky_days shown in F|g§ and 13. The Emissivity at 10.8 um 0.0000 0.0000 0.0000
analysis refers to a single SEVIRI pixel in the Sahara desert gpyssivity at 8.7 um 0.0000  —0.0001 0.0000
(30.66° N, 5.56° E) and has been performed with a time res-  Surface temperature 0.0014 —0.0014 0.0003

olution of 15 min. According td.i et al. (2012, we have that
the amplitude of the daily cycle is quite evident for the SE-
VIRI channel at 8.7 um where peak-to-peak variations can
reach~ 0.03. Smaller variations are found at 10.8 um (below
0.01). At 12 um the variation is much less pronounced and in
some cases it seems to have a reverse sign with respectto t
pattern at 8.7 um, an effect which has been reported also bg
Li et al. (2012.

These daily variations of emissivity over desert sand, even
in the dry (non-rainy) season, have been first reportdd by
al. (2012. ltis very likely that these variations are the result

www.atmos-meas-tech.net/6/3613/2013/

of day—night sand evotranspiration, which occurs for direct
adsorption of water vapor at the surfaéggaém and Berliner
%804 2006 Mira et al, 2007). Clear-sky daily variation of
emissivity is more pronounced for desert sand because of the
trong contrast of quartz absorption band at 8.6 um.

However, it should be noted that the a posteriori covari-
ance matrix of the analysié, (see Eg11l) shows a relatively
strong anticorrelation of the retrievdd ande. This anticor-
relation could introduce a systematic drift in the retrieved
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Table 4. Summary of the settings for the KF scheme.

Element Setting/Reference
Emissivity model equation Persistence
Surface temp. model equation Persistence
Emissivity true values Unknown
Emissivity initial background vector (at time=0)  Average from UW/BFEMIS database, over the years 2003-2012, but not 2010
Emissivity initial backgroundbe (at time=0) from UW/BFEMIS database, 2003-2012 years, but not 2010
Emissivity stochastic covarianc8;e as line above scaled down with= 10
Surface temp. true values Unknown
Surface temp. initial value (at time =0) ECMWEF analysis at 00:00 h
Surface temp. initial backgroundy, 1K?2
Surface temp. stochastic varianggr, As St for Iand,STS/fz, with f = 10 for sea surface
Observational covariance matri3; Diagonal, from SEVIRI radiometric noise
Atmospheric profiles Assumed known, space-time collocated ECMWF analysis
Convergence criterion Cost functiop = 2 < 2)
0.8— : : : : parameters, and therefore could potentially be a spurious
cause of the diurnal variation seen in emissivity. Never-
0.79F 1 theless, based on our present retrieval exercises with real
and simulated observations, it seems that a persistence state
g 0781 model for emissivity is capable to attenuate cyclic artefacts
% 077l 1 in the retrieval (as an example, see the simulation provided
g in Figs.5 and6). Moreover, for non-arid lands we have ob-
:§ 0.76} served situations in which the day—night emissivity variation,
£ despite the anticorrelation @ ande, is in phase with the
Yo7t daily temperature cycle (e.g., see Secp), that is, the re-
verse of the situation we have observed for conditions over
0.74r desert sand. Furthermore, IASI observatidvagiello et al,
0,73 ‘ ‘ ‘ ‘ 2013 confirm that the daily variation of emissivity is a gen-
0 5 10 15 20 25 uine feature in the data. Finalljjulley et al. (2010 has
Time (hour of the day) . . . . .
shown that emissivity retrieval from satellite observations is
60 sensitive to changes in soil moisture.
Figuresll1to 13 are meant to exemplify that our physical
551 scheme is sensitive to these day—night emissivity variations.
s0l An in-depth assessment of this effect is ongoing. As already
stressed in sectioh the present study mostly focuses on the
457 novel aspect of the methodology and a comparison of its re-
o 0 sults with in situ data and other similar satellite products.
= Bearing this in mind, we go back to Fifj2, from which it
35r is possible to see that a slight cloudiness affects the observa-
ol tions at the beginning of the second day. We do not skip these
observations when performing the retrieval, therefore F2g.
25 shows that slight cloudiness does not bring the Kalman filter
20 to an unstable state. In other words, the stability of the filter

1o 15 20 25 is not influenced by slight cloudiness, although this informa-
Time (hour of the day) . .
tion is forward-propagated through the forecast.
Fig. 11. Upper panel: emissivity retrieval (channel at 8.7 um) for However, overcast conditions that persist a long time (e.g.,

one day and one single SEVIRI pixel over the Sahara desert; bottorifOM 71 t0 72, With 72 — 73 3> 15min) can (e.g., because of
panel: same as top, but for temperature. Error bars are the squaf@in) drastically change the emissivity at the endpormts
root of the corresponding diagonal elements of the covariance maandz,. Furthermore, cloudy radiances could be undetected,
trix, S. in which case serious overcast conditions could negatively
influence the retrieval products. To avoid this effect, cloudy
radiances (if detected) are just skipped within the KF scheme
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Fig. 12. Retrieved surface temperature (bottom panel) for a site in 0051152 be"ay"offﬁe :mr:ifw (;m:itesp 06];5157“;-;’ 8 859 9510
the Sahara desert. The retrieval has been obtained with the Kalmar
filter for ten consecutive days. In the legend, ECMWFanaly- g 13, (75 ¢) time evolution for the retrieval exercise shown

sis refers to the surface temperature analysis at the canonical houyg Fig. 12. (a) Surface temperaturdb) emissivity at 12 um{c)
within a day, whereas ECMWFs is the ECMWF surface tempera-  gmissivity at 10.8 um(d) emissivity at 8.7 um. Black dots mark

ture linearly extrapolated to the SEVIRI time steps. The upper panel ».q0 UTC to identify the times of the emissivity minima as com-
in the figure also shows the quality of the reconstructed radiancepared to noon.

(channel at 12 pm). 1r.u.=1Wm sr 1 (cm=1)~-1.

target area shown in Fi@. Also in this case the results have

and, furthermore, only retrieval which satisfies the cost func-been spatially averaged. Possible gaps in the time sequence
tion condition of Eq. {3) are propagated through the filter. correspond to time intervals characterized by the presence of
To this end, it should be stressed that KF does not need taloudiness.
deal with equally spaced times.

This is exemplified in Figl4, which shows the retrieval 4.2 Comparison with ECMWF Ts, AVHRR-AMSR and
for surface temperature corresponding to whole month of in situ land surface temperature observations
July for the Seville test area. The analysis has been per-
formed only for clear-sky soundings (according to the oper-Figure 12 shows that the ECMWF model compares fairly
ational SEVIRI cloud mask) and has been spatially averagedvell with the retrieval at nighttime hours, whereas during
over the 187 available SEVIRI pixels. Cloudy radiances aredaytime ECMWF surface temperature is biased significantly
skipped in the analysis, which means that we use a time stefpw. This is in line with the deficiencies in ECMWF model
which is not a constant. Missing values of the surface temperskin temperature identified biyrigo and Viterbo(2003.
ature in Figl4correspond to cloudy radiances. However, un-  To have a better assessment of this bias, we have spatially
detected cloudy observations could also be processed, whiciveraged the data over the ECMWF grid box &% 0.5 de-
can drift the filter to regions which do not correspond to the grees. In this way the results are much more consistent with
cost function below the prescribec-threshold. Therefore, the horizontal spatial resolution of the ECMWF analysis.
retrievals are only considered and propagated ahead only in The results are shown in Fid6. For the desert site, we
case the cost functiop? = 25 has been reduced below the find that the bias at midday reaches abodC%nd has a
x2-threshold. Thesgoodretrievals are shown in Fig4. minimum at midnight, when the bias is abot. At 06:00

The retrieval for emissivity is shown again in Figt (bot- and 18:00 UTC the bias is still negative and has a magnitude
tom panel). Also in this case, the results have been averef about 2°C.
aged over spatially adjacent clear-sky pixels. We stress that For the case of the test site of Seville, we have observed
clear sky is defined according to the SEVIRI cloud mask,a negative bias of 7°C at midday. However, for the other
which can still contain undetected cloudiness. These undethree canonical hours of the ECMWF analysis, the bias is
tected clouds cause the occasional spikes seen irLEidt below 1°C.
is also interesting to note, that we also see a cyclic emissiv- A much better comparison has been obtained in the case of
ity behavior for Seville, although now the amplitude of these the ocean site, also shown in FI. In this case, the overall
variations is confined withie-0.01. bias is about-0.3°C (ECMWEF is slightly warmer than KF).

Figure15 exemplifies the analysis for the case of sea sur-However, we also see a dependence on the hour of the day.
face. The retrieval fonTs, ¢) refers to the Mediterranean The bias is almost zero at 00:00 and 18:00 UTC, and reaches
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Fig. 14.Retrieved surface temperatyeg and emissivityb) for the

Seuville test site. Results have been averaged over the 187 adjaceﬁ}ga;s'Remeveg surfRace tlemr? erattL)(aé and emISS(IjVIt)(b) fﬂrtgss di
SEVIRI pixels. The retrievals included are only those which cor- editerranean Sea. Results have been averaged over the adja-

respond to clear-sky soundings apd = 25 cost function values cent SEVIRI pixels. The retneyals included are only those which
rSzgrrespond to clear-sky soundings apfl= 25 cost function val-
ues below threshold. Data have been processed (and are shown) at

SEVIRI repeat time of 15 min. . :
the SEVIRI repeat time of 15 min.

~ —0.6°C at 12:00 UTC. Thus, it seems that the ECMWF
model also has a bias for sea surface, which depends on the Finally, we will now show and discuss the comparison
daily cycle. with in situ land surface temperature observations at the
A very good agreement has also been found with theEvora station (southern Portugal). For this station the SE-
AMSR+AVHRR OISST analysis (see Fi§7). The analysis  VIRI KF analysis for temperature and emissivity was com-
has been used to compute the skin temperature over the smaduted for all clear observations, with clear sky defined ac-
Mediterranean target area shown in FAgThe results shows cording to the SEVIRI operational cloud mask.
that SEVIRI KF captures the correct day-to-day variations Figurel18 (upper panel) compares the surface temperature
of the skin temperature. Daily average temperatures agretor three consecutive clear-sky days in July 2010. It is seen
within 0.5°C and, whereas the agreement of the monthly av-that the SEVIRI KF analysis is slightly upward biased with
erage temperature is within C (23.93°C SEVIRI KF vs. respect to the in situ observations both at midday and before
24.06°C of AMSR+AVHRR OISST). The relatively large sunrise. This behavior is also obtained for the LSA SAF
difference (about 0.7C) around days 23-24 is likely due to product and can be partially explained by the heterogenous
the effect of cloudiness combined to the coarser spatial resoscene, even though the methodology used to process in situ
lution of the OISST analysis. observations has been designed with the aim of minimizing
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b) Fig. 17. Comparison of the daily average sea-surface tempera-
ture retrieved with SEVIRI KF and that computed on the basis of
S0r 1 AMSR+AVHRR OISST analysis. Each tiny red line corresponds to
5 one single SEVIRI pixel (178 pixels in total). The two tick lines
< 0t correspond to results that have been spatially averaged over the
[ Mediterranean target area shown in Fg.
LL %
2 "
= 30 O 00:00 UTC| -
2 O 06:00 UTC this effect. When we consider the comparison with SEVIRI
< O 12:00 UTC LSA SAF product, the midday and nighttime bias tend to be
20} o 18:00UTC| ] confined well below 2C. The position of Meteosat-9 with
respect to Evora, favors the observation of sunlit surfaces.
10 ‘ ‘ ‘ ‘ The current compositing of ground data does not include an
10 20 ?/IRI . 40 50 60 accurate weighing of sunlit and shadowed ground fractions,
S () which also may lead to in situ temperatures being cooler than
those actually observed by SEVIRI. This is further corrobo-
40 rated by the comparison between SEVIRI KF analysis for
c) temperature and the SEVIRI LSA SA product; two inde-
35t ; pendent methodologies produce very close values, with neg-
. ligible systematic differences and standard deviation of about
g 0.8°C.
- 301 5 Emissivity retrieval for Evora (see Fi@8), with the high-
'-3'- 5 0000 UTC est value obtained for 8.7 um, clearly above that obtained
S o5l ' for 10.8 um, is consistent with the emissivity spectra for dry
5 O 06:00 UTC . o
] 5° o 12:00 UTC grass Seemann et gl2008 Baldridge et al.2009. This is
5 18:00 UTC in agreement with the type of landscape observed around the
20 | station during the summer, when the understorey dries out
completely.
15 ‘ ‘ ‘ ‘ Also for Evora an emissivity wavy pattern is visible, al-
15 20 25 30 35 40 though its amplitude is very small (withi#0.005, as exem-

SEVIRIT_ (°C) plified in Fig. 18 (bottom panel)). LSA SAF analysis uses an

. . almost constant emissivity at 10.8 um, which has a value of
Fig. 16.Example of scatter plots of retrieved aqd ECM\lFor the 0.975 (black line in Figl8). The SEVIRI KF analysis shows
thre_e test areas. To be p.“’pe”y compared with ECMWF IorodU'CtSthat the emissivity at this channel 460.972 and varies in
retrievals have been spatially averaged over tbex®.5 grid boxes h ith the dailv t t le. Alth h .
shown in Fig.2. (a) Sahara deser{p) Seville site;(c) Mediter- phase wi e aally gmpera ur.e cyc_e._ i ougn, as previ-
ranean Basin. ously stated, the amplitude of this variation is of the order of

few parts per thousand.
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:'; scatter plot offs estimated according to this work and the SEVIRI
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w
0.96} | The full set of SEVIRI KF temperature retrievals for the
0,955 | Evora station is compared to in situ observations in the scat-
ter plot of Fig.19. This figure confirms the presence of a

6 165 17 175 18 185 19 positive bias of 1.10C in the KF analysis. Again, we stress
Day of the month that this difference is within the uncertainty of the compar-

Fig. 18. Upper panel: land surface temperature for three consecu!SON between in situ and satellite observations. The bias is
tive clear-sky days in July 2010 estimated according to this worknearly zero when we compare SEVIRI KF to SEVIRI LSA
(SEVIRI KF), in situ observations, and SEVIRI LSA SAF analysis. SAF.
Middle panel, difference between retrieval and in situ observations
(Retrieved-In Situ). Bottom panel: KF emissivity at the three SE- 4.3 Monthly maps
VIRI atmospheric window channels. For comparison the figure also
shows the emissivity at 10.8 um assumed by the SEVIRI LSA SAFWe have used the scheme to perfoffiy, €) retrieval over
analysis. the full target area for land surface and the results are sum-
marized in this section.

Figure20 shows the monthly map for the surface temper-
ature and compares it with the equivalent map derived from
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Fig. 20.Left, SEVIRI monthly map of surface temperature. Right, ECMWF monthly map of surface temperature.

Fig. 21.Left, SEVIRI monthly map of emissivity at 8.7 um. Right, difference with UW/BFEMIS database for July 2010.

the ECMWF analysis. The comparison allows us to appreci- Finally, it is worth mentioning that the results shown in

ate the high horizontal spatial resolutiond® x 0.05°) com- this section have been intercompared with those obtained by

pared to that of ECMWEF, which is ten times less resolvedIASI (infrared atmospheric sounder interferometer), for the

(0.5° x 0.5°). Because of the monthly average, differencessame target area and dates, in a recent papévidsiello

tend to be lower than those seen for hourly and daily valuesand Serig(2013. The intercomparison showed that SEVIRI

However, especially for the arid regions differences up to 5 Kand IASI products for temperature agree within 1 K, whereas

are still visible. emissivity retrievals are found highly consistent with differ-
Figure21 shows the monthly map of the channel emissiv- ences normally of the order ef 0.001.

ity at 8.7 um. The difference with the UW/BFEMIS database

for the same month and geographic region is also shown in

the same figure. Differences appears to be more marked for

the desert sand, where the variability is much larger becausé Conclusions

of the strong response from quartz particles. However, the

agreement is generally good and no important deviations arén this paper we have described a Kalman filter methodol-

seen. The map of the channel emissivity at 8.7 um shows verggy and its implementation for the retrieval of surface tem-

well the details of seas of sand in the Sahara desert. Theggerature and emissivity from SEVIRI atmospheric window

correspond to the bluest areas in the map and are charactéanfrared channels.

ized by the lower value of emissivity. The methodology has been applied to a case study char-
For the sake of brevity, the maps corresponding to theacterized by many surface features (vegetation, cultivation,

other two window channels are not shown. The compari-urban areas, bare soil, desert sand and sea water, to name a

son of the results with monthly maps from the UW/BFEMIS few).

database for the same date and location shows that differ- It has been shown that by properly tuning the parameters

ences for these channels are normally below 0SMrip et  of the state equation, we can model the different time scales

al., 2013. of emissivity and temperature and hence develop a method
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which allows us to separate the radiative effects of the twoto no impact on the final estimate which is, therefore, largely
parameters. dominated by the data.

The analysis performed on the basis of a case study has To summarize, the inclusion through a KF of a persis-
revealed many important features regarding the time evotence model within the retrieval scheme allows us to effec-
lution of emissivity. For desert sand we observe day—nighttively separate emissivity from surface temperature because
variations which are anticorrelated with the daily tempera-it attenuates théTs-¢) anticorrelation statistical structure im-
ture cycle. Conversely, for other types of surface featuresposed by Least Squares estimation. In addition, the (fortu-
it seems that there is only a very small day—night variationnate) fact that the surface temperature is strongly constrained
which tends to be correlated with the daily temperature cy-by the data allows us to relax the persistence constraint for
cle. this parameter alone and obtain an effective simultaneous re-

It has been shown that the Kalman filter can handle un-trieval.
evenly spaced data acquisition times; this allows us to pro- The application we have considered in this paper fo-
cess long sequences of data in which cloudy observations ar@uses on time continuity and neglects possible spatial cor-
simply skipped. However, the effect of raining clouds canrelation of the surface temperature field. The use of a tem-
alter the emissivity and introduce sharp gradients in its timeporal constraint alone and the statistical independency of
evolution that could be inconsistent with the persistence stat@earbyTs grid points also reflects our present understanding
equation and the relative large time scale assumed for this pasf the emissivity and surface temperature space-time evolu-
rameter. This effect could be alleviated by reinitializing the tion. Nevertheless, we have shown that results are realistic
Kalman filter in presence of a big gap in the time sequenceusing an uncorrelated assumption. However, it is important
because of cloudiness. However, this is a point that has tdo stress that in our study the KF methodology has been es-
be addressed with suitable case studies and therefore neetiblished in its general form which applies to both spatial
further investigation. and temporal constraints. We think that the use of physical

The results have been compared with several independertigorithms such as that developed in this study, once applied
observations. These comparisons lead us to conclude that the the full disk, can lead to the formulation and/or improve-
scheme is accurate and can be reliably extended to the fulinents of statistical ensembles (such as the UW/BFEMIS
SEVIRI disk. database), which should allow us to get better insight into

The KF methodology for the retrieval @ffs,¢) we have  understanding spatial features @, ¢) fields and, finally,
developed in this paper considers a situation in which weenable us to apply a full 3-D Kalman filter.
give (at least for surface temperature) poor confidence to the It is fair to say that for the presenfs, ¢) problem we
dynamical model (we assign a relatively high value for the could also make use of a Kalman smoother (KBddgers
stochastic variance). Therefore, the question of whether a dy2000. KS is a particular application of KF: a KF run for-
namical model should be considered at all could be posed, wavard and backward. The error analysis shown in this paper
could use, e.g., Optimal EstimatioRgdgers2000. There = demonstrates that we can already achieve a very useful pre-
are however mainly two reasons in favor of KF for the prob- cision with a KF: for temperature;0.2K and for emissivity,
lem at hand. First, without the time constraint for emissivity +0.005. In principle a KS approach could further improve
(which allowed us to prescribe low error in the persistencethe results, but the study was done with regard to an oper-
model) we would not successfully separate emissivity fromational implementation where the additional logistics would
temperature (which are inherently anticorrelated because dbe prohibitive.
the radiative transfer equation). By forcing emissivity to per-  Finally, we want to stress that although the case study de-
sistence we prevent its retrieved value from developing arveloped in this study is limited to surface parameters (be-
unrealistic time dependence that is anticorrelated to surfaceause of the limited information content of SEVIRI infrared
temperature. Second, although with Optimal Estimation wechannels on atmospheric parameters), the retrieval method-
could accommodate time continuity within the a priori back- ology has been described in its most general framework and
ground matrix through accumulation of the data on a givencan therefore provide guidance to its application to future in-
time slot; this would be at the expense of increasing the di-struments such as MTG-IRS. This instrument will have some
mensionality of the retrieval systerério et al. 2013. In 2000 spectral channels. Therefore, the data space, rather than
contrast, KF is much more efficient at keeping the dimen-the parameter space, will be driving the design of a product
sionality of the data space low. retrieval algorithm. Even with: = 2000, a 2-D Kalman filter

It is also worth mentioning that, although we assign a rel- (time x vertical) is feasible in terms of computational costs.
atively high value to the stochastic variance of the surfaceln this respect, if we consider that the observational covari-
temperature, we yield a retrieval precision for this parame-ance matrix for MTG-IRS is expected to be nearly diago-
ter (square root of the diagonal of the a posteriori retrievalnal (which implies conditional independence of the obser-
covariance matrix) ofs £0.2°C. Once again, this result im- vations), the Kalman filter update can be done sequentially
plies that the a priori information for temperature has little (Nychka and Andersqr201Q Rodgers2000. With this ap-

proach we need to store onty = 2000 diagonal elements
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and use a numerical algorithm which does not involve any D.: Atmospheric radiative transfer modeling: a summary of the
matrix inversion. From a computational point of view, the = AER codes, J. Quant. Spectrosc. Ra., 91, 233-244, 2005.
dimensionality of the problem would be driven by the anal- Courtier, P.: Variational methods, J. Meteorol. Soc. Jpn., 75, 211—
ysis covariance matrixg,, which at this point could include ~_ 218,1997. o S
also suitable spatial constraints making the methodology 4<uomo. V., Serio, C., Crisciani, ., and, Ferraro, A.: Discriminating
D. However, in case of atmospheric parameters, the issue of randomness from chaos with application to a weather time se-

. . ries, Tellus A, 46, 299-313, ddi0.1034/j.1600-0870.1994.t01-
the dynamical model becomes much more important than 2-00005.x 1994

for the, (Ts ) problem'. In fact, we know tha}t 'nfrar_ed ob- Dash, P, Olesen, F. S., and Prata, A. J.: Optimal land surface tem-
servations from satellites can lack the spatial vertical reso- perature validation site in Europe for MSG, Proceedings of EU-
lution to rESO|Ve, e.g., temperature and moisture structures METSAT Meteoro|ogica] Satellite Conference, Prague, 31 May—
in the boundary layer and lower troposphere. One possible 4 June 2004, EUM, p. 41, 2004.

approach could be to use the ECMWEF analysis or forecasEvensen, G.: Sequential data assimilation with a nonlinear quasi-
directly as the state equation. With satellite observations ev- geostrophic model using Monte Carlo methods to do forecast er-
ery 15 min and with 3 km resolution, the present philosophy ror statistics, J. Geophys. Res., 99, 10143-1016, 1994.

of data-driven approach with a persistence model and suitéentemann, C. L., Donlen, C. J., Stuart-Menteth, A, and

able space-time stochastic error levels could be exploited to Wentz, F. J.: Diurnal signals in satelite sea surface tem-
retrieve a 4-D atmospheric field perature measurements, Geophys. Res. Lett. , 30, 1140,
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