4 research outputs found

    Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)

    Get PDF
    The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network’s operation (e.g., data acquisition, format, storage, and diagnostics) are described. Characterization of the GNOME is a key prerequisite to searches for and identification of exotic physics signatures

    Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)

    Get PDF
    The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network’s operation (e.g., data acquisition, format, storage, and diagnostics) are described. Characterization of the GNOME is a key prerequisite to searches for and identification of exotic physics signatures

    Analysis method for detecting topological defect dark matter with a global magnetometer network

    No full text
    © 2020The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be distinguished from random noise. The reliability of the analysis procedure and the sensitivity of the GNOME to domain-wall crossings are studied using simulated data11sciescopu

    Water Analysis: Emerging Contaminants and Current Issues

    No full text
    corecore