218 research outputs found

    Quantum Theory in Accelerated Frames of Reference

    Get PDF
    The observational basis of quantum theory in accelerated systems is studied. The extension of Lorentz invariance to accelerated systems via the hypothesis of locality is discussed and the limitations of this hypothesis are pointed out. The nonlocal theory of accelerated observers is briefly described. Moreover, the main observational aspects of Dirac's equation in noninertial frames of reference are presented. The Galilean invariance of nonrelativistic quantum mechanics and the mass superselection rule are examined in the light of the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005

    Nonlocality of Accelerated Systems

    Get PDF
    The conceptual basis for the nonlocality of accelerated systems is presented. The nonlocal theory of accelerated observers and its consequences are briefly described. Nonlocal field equations are developed for the case of the electrodynamics of linearly accelerated systems.Comment: LaTeX file, no figures, 9 pages, to appear in: "Black Holes, Gravitational Waves and Cosmology" (World Scientific, Singapore, 2003

    Acceleration and Classical Electromagnetic Radiation

    Full text link
    Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.Comment: To appear in Gen. Rel. Gra

    Gravitomagnetic Effects in the Propagation of Electromagnetic Waves in Variable Gravitational Fields of Arbitrary-Moving and Spinning Bodies

    Get PDF
    Propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary velocities is discussed. The gravitational field is assumed to be "weak" everywhere. Equations of motion of a light ray are solved in the first post-Minkowskian approximation that is linear with respect to the universal gravitational constant GG. We do not restrict ourselves with the approximation of gravitational lens so that the solution of light geodesics is applicable for arbitrary locations of source of light and observer. This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the rotation of pulsar and its companion. We also derive the correction to the light deflection angle caused by rotation of gravitating bodies in the solar system (Sun, planets) or a gravitational lens. The gravitational shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of polarization of electromagnetic waves (Skrotskii effect). This formula is valid for arbitrary translational and rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space astrometry and developing corresponding algorithms for data processing in space astrometric missions such as FAME, SIM, and GAIA.Comment: 36 pages, 1 figure, submitted to Phys. Rev.

    Effects of Space-Time Curvature on Spin-1/2 Particle Zitterbewegung

    Full text link
    This paper investigates the properties of spin-1/2 particle Zitterbewegung in the presence of a general curved space-time background described in terms of Fermi normal co-ordinates, where the spatial part is expressed using general curvilinear co-ordinates. Adopting the approach first introduced by Barut and Bracken for Zitterbewegung in the local rest frame of the particle, it is shown that non-trivial gravitational contributions to the relative position and momentum operators appear due to the coupling of Zitterbewegung frequency terms with the Ricci curvature tensor in the Fermi frame, indicating a formal violation of the weak equivalence principle. Explicit expressions for these contributions are shown for the case of quasi-circular orbital motion of a spin-1/2 particle in a Vaidya background. Formal expressions also appear for the time-derivative of the Pauli-Lubanski vector due to space-time curvature effects coupled to the Zitterbewegung frequency. As well, the choice of curvilinear co-ordinates results in non-inertial contributions in the time evolution of the canonical momentum for the spin-1/2 particle, where Zitterbewegung effects lead to stability considerations for its propagation, based on the Floquet theory of differential equations.Comment: 22 pages, no figures; slight revisions; accepted for publication in Classical and Quantum Gravit

    The Generalized Jacobi Equation

    Get PDF
    The Jacobi equation in pseudo-Riemannian geometry determines the linearized geodesic flow. The linearization ignores the relative velocity of the geodesics. The generalized Jacobi equation takes the relative velocity into account; that is, when the geodesics are neighboring but their relative velocity is arbitrary the corresponding geodesic deviation equation is the generalized Jacobi equation. The Hamiltonian structure of this nonlinear equation is analyzed in this paper. The tidal accelerations for test particles in the field of a plane gravitational wave and the exterior field of a rotating mass are investigated. In the latter case, the existence of an attractor of uniform relative radial motion with speed 2−1/2c≈0.7c2^{-1/2}c\approx 0.7 c is pointed out. The astrophysical implications of this result for the terminal speed of a relativistic jet is briefly explored.Comment: LaTeX file, 4 PS figures, 28 pages, revised version, accepted for publication in Classical and Quantum Gravit

    Spin-Gravity Coupling in a Rotating Universe

    Full text link
    The coupling of intrinsic spin with the nonlinear gravitomagnetic fields of Goedel-type spacetimes is studied. We work with Goedel-type universes in order to show that the main features of spin-gravity coupling are independent of causality problems of the Goedel universe. The connection between the spin-gravitomagnetic field coupling and Mathisson's spin-curvature force is demonstrated in the Goedel-type universe. That is, the gravitomagnetic Stern--Gerlach force due to the coupling of spin with the gravitomagnetic field reduces in the appropriate correspondence limit to the classical Mathisson spin-curvature force.Comment: 37 page

    Nonlocal Electrodynamics of Rotating Systems

    Get PDF
    The nonlocal electrodynamics of uniformly rotating systems is presented and its predictions are discussed. In this case, due to paucity of experimental data, the nonlocal theory cannot be directly confronted with observation at present. The approach adopted here is therefore based on the correspondence principle: the nonrelativistic quantum physics of electrons in circular "orbits" is studied. The helicity dependence of the photoeffect from the circular states of atomic hydrogen is explored as well as the resonant absorption of a photon by an electron in a circular "orbit" about a uniform magnetic field. Qualitative agreement of the predictions of the classical nonlocal electrodynamics with quantum-mechanical results is demonstrated in the correspondence regime.Comment: 23 pages, no figures, submitted for publicatio
    • 

    corecore