337 research outputs found

    Mach's Principle and the Origin of Inertia

    Full text link
    The current status of Mach's principle is discussed within the context of general relativity. The inertial properties of a particle are determined by its mass and spin, since these characterize the irreducible unitary representations of the inhomogeneous Lorentz group. The origin of the inertia of mass and intrinsic spin are discussed and the inertia of intrinsic spin is studied via the coupling of intrinsic spin with rotation. The implications of spin-rotation coupling and the possibility of history dependence and nonlocality in relativistic physics are briefly mentioned.Comment: 14 pages. Dedicated to Carl Brans in honor of his 80th birthday. To appear in the Brans Festschrift; v2: typo corrected, published in: At the Frontier of Spacetime, edited by T. Asselmeyer-Maluga (Springer, 2016), Chapter 10, pp. 177-18

    The Hypothesis of Locality and its Limitations

    Get PDF
    The hypothesis of locality, its origin and consequences are discussed. This supposition is necessary for establishing the local spacetime frame of accelerated observers; in this connection, the measurement of length in a rotating system is considered in detail. Various limitations of the hypothesis of locality are examined.Comment: LaTeX file, no figures, 14 pages, to appear in: "Relativity in Rotating Frames", edited by G. Rizzi and M.L. Ruggiero (Kluwer Academic Publishers, Dordrecht, 2003

    On detecting the gravitomagnetic field of the earth by means of orbiting clocks

    Get PDF
    Based on the recent finding that the difference in proper time of two clocks in prograde and retrograde equatorial orbits about the Earth is of the order 10^{-7}s per revolution, the possibility of detecting the terrestrial gravitomagnetic field by means of clocks carried by satellites is discussed. A mission taking advantage of this influence of the rotating Earth on the proper time is outlined and the conceptual difficulties are briefly examined.Comment: Talk given at the 32nd COSPAR Scientific Assembly, held at Nagoya, Japan, 12-19 July 1998, 4 pages LATE

    Decaying Dark Energy in Higher-Dimensional Gravity

    Get PDF
    We use data from observational cosmology to put constraints on higher-dimensional extensions of general relativity in which the effective four-dimensional dark-energy density (or cosmological "constant") decays with time. In particular we study the implications of this decaying dark energy for the age of the universe, large-scale structure formation, big-bang nucleosynthesis and the magnitude-redshift relation for Type Ia supernovae. Two of these tests (age and the magnitude-redshift relation) place modest lower limits on the free parameter of the theory, a cosmological length scale L akin to the de Sitter radius. These limits will improve if experimental uncertainties on supernova magnitudes can be reduced around z=1.Comment: 11 pages, 5 figures, submitted to A&

    Helicity-Rotation-Gravity Coupling for Gravitational Waves

    Get PDF
    The consequences of spin-rotation-gravity coupling are worked out for linear gravitational waves. The coupling of helicity of the wave with the rotation of a gravitational-wave antenna is investigated and the resulting modifications in the Doppler effect and aberration are pointed out for incident high-frequency gravitational radiation. Extending these results to the case of a gravitomagnetic field via the gravitational Larmor theorem, the rotation of linear polarization of gravitational radiation propagating in the field of a rotating mass is studied. It is shown that in this case the linear polarization state rotates by twice the Skrotskii angle as a consequence of the spin-2 character of linear gravitational waves.Comment: 11 pages, no figures, accepted for publication in Phys. Rev. D; v2: a few minor typos correcte

    Gravitomagnetic Jets

    Full text link
    We present a family of dynamic rotating cylindrically symmetric Ricci-flat gravitational fields whose geodesic motions have the structure of gravitomagnetic jets. These correspond to helical motions of free test particles up and down parallel to the axis of cylindrical symmetry and are reminiscent of the motion of test charges in a magnetic field. The speed of a test particle in a gravitomagnetic jet asymptotically approaches the speed of light. Moreover, numerical evidence suggests that jets are attractors. The possible implications of our results for the role of gravitomagnetism in the formation of astrophysical jets are briefly discussed.Comment: 47 pages, 8 figures; v2: minor improvements; v3: paragraph added at the end of Sec. V and other minor improvements; v4: reference added, typos corrected, sentence added on p. 24; v5: a few minor improvement

    On the physical meaning of Fermi coordinates

    Full text link
    (Some Latex problems should be removed in this version) Fermi coordinates (FC) are supposed to be the natural extension of Cartesian coordinates for an arbitrary moving observer in curved space-time. Since their construction cannot be done on the whole space and even not in the whole past of the observer we examine which construction principles are responsible for this effect and how they may be modified. One proposal for a modification is made and applied to the observer with constant acceleration in the two and four dimensional Minkowski space. The two dimensional case has some surprising similarities to Kruskal space which generalize those found by Rindler for the outer region of Kruskal space and the Rindler wedge. In perturbational approaches the modification leads also to different predictions for certain physical systems. As an example we consider atomic interferometry and derive the deviation of the acceleration-induced phase shift from the standard result in Fermi coordinates.Comment: 11 pages, KONS-RGKU-94/02 (Latex

    Effects of Space-Time Curvature on Spin-1/2 Particle Zitterbewegung

    Full text link
    This paper investigates the properties of spin-1/2 particle Zitterbewegung in the presence of a general curved space-time background described in terms of Fermi normal co-ordinates, where the spatial part is expressed using general curvilinear co-ordinates. Adopting the approach first introduced by Barut and Bracken for Zitterbewegung in the local rest frame of the particle, it is shown that non-trivial gravitational contributions to the relative position and momentum operators appear due to the coupling of Zitterbewegung frequency terms with the Ricci curvature tensor in the Fermi frame, indicating a formal violation of the weak equivalence principle. Explicit expressions for these contributions are shown for the case of quasi-circular orbital motion of a spin-1/2 particle in a Vaidya background. Formal expressions also appear for the time-derivative of the Pauli-Lubanski vector due to space-time curvature effects coupled to the Zitterbewegung frequency. As well, the choice of curvilinear co-ordinates results in non-inertial contributions in the time evolution of the canonical momentum for the spin-1/2 particle, where Zitterbewegung effects lead to stability considerations for its propagation, based on the Floquet theory of differential equations.Comment: 22 pages, no figures; slight revisions; accepted for publication in Classical and Quantum Gravit

    An alternative derivation of the gravitomagnetic clock effect

    Get PDF
    The possibility of detecting the gravitomagnetic clock effect using artificial Earth satellites provides the incentive to develop a more intuitive approach to its derivation. We first consider two test electric charges moving on the same circular orbit but in opposite directions in orthogonal electric and magnetic fields and show that the particles take different times in describing a full orbit. The expression for the time difference is completely analogous to that of the general relativistic gravitomagnetic clock effect in the weak-field and slow-motion approximation. The latter is obtained by considering the gravitomagnetic force as a small classical non-central perturbation of the main central Newtonian monopole force. A general expression for the clock effect is given for a spherical orbit with an arbitrary inclination angle. This formula differs from the result of the general relativistic calculations by terms of order c^{-4}.Comment: LaTex2e, 11 pages, 1 figure, IOP macros. Submitted to Classical and Quantum Gravit

    New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies

    Full text link
    Improved terrestrial experiment to test the equivalence principle for rotating extended bodies is presented, and a new upper limit for the violation of the equivalence principle is obtained at the level of 1.610-7% \times 10^{\text{-7}}, which is limited by the friction of the rotating gyroscope. It means the spin-gravity interaction between the extended bodies has not been observed at this level.Comment: 4 page
    • …
    corecore