4 research outputs found

    Gravitational Ionization: A Chaotic Net in the Kepler System

    Get PDF
    The long term nonlinear dynamics of a Keplerian binary system under the combined influences of gravitational radiation damping and external tidal perturbations is analyzed. Gravitational radiation reaction leads the binary system towards eventual collapse, while the external periodic perturbations could lead to the ionization of the system via Arnold diffusion. When these two opposing tendencies nearly balance each other, interesting chaotic behavior occurs that is briefly studied in this paper. It is possible to show that periodic orbits can exist in this system for sufficiently small damping. Moreover, we employ the method of averaging to investigate the phenomenon of capture into resonance.Comment: REVTEX Style, Submitte

    The Mixmaster Universe in Five Dimensions

    Get PDF
    We consider a five dimensional vacuum cosmology with Bianchi type-IX spatial geometry and an extra non-compact coordinate. Finding a new class of solutions, we examine and rule out the possibility of deterministic chaos. We interpret this result within the context of induced matter theory.Comment: 13 page

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Soliton solutions and cosmological gravitational waves

    No full text
    We examine plane-symmetric cosmological solutions to Einstein's equations which can be generated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "incipient" gravitational waves on the Bianchi background. At early times they look like nonlinear inhomogeneities propagating at nearly the speed of light ("gravisolitons"), while at late times they look like cosmological gravitational waves
    corecore