75 research outputs found
Constraining global properties of the Draco dwarf spheroidal galaxy
By fitting a flexible stellar anisotropy model to the observed surface
brightness and line-of-sight velocity dispersion profiles of Draco we derive a
sequence of cosmologically plausible two-component (stars + dark matter) models
for this galaxy. The models are consistent with all the available observations
and can have either cuspy Navarro-Frenk-White or flat-cored dark matter density
profiles. The dark matter halos either formed relatively recently (at z~2...7)
and are massive (up to ~5x10^9 M_Sun), or formed before the end of the
reionization of the universe (z~7...11) and are less massive (down to ~7x10^7
M_Sun). Our results thus support either of the two popular solutions of the
"missing satellites" problem of Lambda cold dark matter cosmology - that dwarf
spheroidals are either very massive, or very old. We carry out high-resolution
simulations of the tidal evolution of our two-component Draco models in the
potential of the Milky Way. The results of our simulations suggest that the
observable properties of Draco have not been appreciably affected by the
Galactic tides after 10 Gyr of evolution. We rule out Draco being a "tidal
dwarf" - a tidally disrupted dwarf galaxy. Almost radial Draco orbits (with the
pericentric distance <15 kpc) are also ruled out by our analysis. The case of a
harmonic dark matter core can be consistent with observations only for a very
limited choice of Draco orbits (with the apocentric-to-pericentric distances
ratio of <2.5).Comment: 18 pages, 14 figures; accepted by Ap
Environment, Ram Pressure, and Shell Formation in HoII
Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII,
a prototype galaxy for studies of shell formation, are presented. HI is
detected to radii over 16' or 4 R_25, and M_HI=6.44x10^8 M_sun. The total HI
map has a comet-like appearance suggesting that HoII is affected by ram
pressure from an intragroup medium (IGM). A rotation curve corrected for
asymmetric drift was derived and an analysis of the mass distribution yields a
total mass 6.3x10^9 M_sun, of which about 80% is dark. HoII lies northeast of
the M81 group's core, along with Kar52 (M81dwA) and UGC4483. No signs of
interaction are observed and it is argued that HoII is part of the NGC2403
subgroup, infalling towards M81. A case is made for ram pressure stripping and
an IGM in the M81 group. Stripping of the disk outer parts would require an IGM
density n_IGM>=4.0x10^-6 atoms/cm^3 at the location of HoII. This corresponds
to 1% of the virial mass of the group uniformly distributed over a volume just
enclosing HoII and is consistent with the X-ray properties of small groups. It
is argued that existing observations of HoII do not support self-propagating
star formation scenarios, whereby the HI holes and shells are created by
supernova explosions and stellar winds. Many HI holes are located in low
surface density regions of the disk, where no star formation is expected or
observed. Ram pressure has the capacity to enlarge preexisting holes and lower
their creation energies, helping to bridge the gap between the observed star
formation rate and that required to create the holes. (abridged)Comment: 43 pages, including 7 figures. 4 figures available as JPEG only.
Complete manuscript including full resolution figures available at
http://www.strw.leidenuniv.nl/~bureau/pub_list.html . Accepted for
publication in The Astronomical Journa
Two Large HI Shells in the Outer Galaxy near l=279 degrees
As part of a survey of HI 21-cm emission in the Southern Milky Way, we have
detected two large shells in the interstellar neutral hydrogen near l=279 deg.
The center velocities are +36 and +59 km/s, which puts the shells at kinematic
distances of 7 and 10 kpc. The larger shell is about 610 pc in diameter and
very empty, with density contrast of at least 15 between the middle and the
shell walls. It has expansion velocity of about 20 km/s and swept up mass of
several million solar masses. The energy indicated by the expansion may be as
high as 2.4 X 10^53 ergs. We estimate its age to be 15 to 20 million years. The
smaller shell has diameter of about 400 pc, expansion velocity about 10 km/s
and swept up mass of about 10^6 solar masses.
Morphologically both regions appear to be shells, with high density regions
mostly surrounding the voids, although the first appears to have channels of
low density which connect with the halo above and below the HI layer. They lie
on the edge of the Carina arm, which suggests that they may be expanding
horizontally into the interarm region as well as vertically out of the disk. If
this interpretation is correct, this is the first detection of an HI chimney
which has blown out of both sides of the disk.Comment: 21 pages, 14 jpeg figures, accepted for publication in A
Superbubble evolution including the star-forming clouds: Is it possible to reconcile LMC observations with model predictions?
Here we present a possible solution to the apparent discrepancy between the
observed properties of LMC bubbles and the standard, constant density bubble
model. A two-dimensional model of a wind-driven bubble expanding from a
flattened giant molecular cloud is examined. We conclude that the expansion
velocities derived from spherically symmetric models are not always applicable
to elongated young bubbles seen almost face-on due to the LMC orientation. In
addition, an observational test to differentiate between spherical and
elongated bubbles seen face-on is discussed.Comment: 25 pages, 7 figures, accepted to ApJ (September, 1999 issue
The Galactic Distribution of Large HI Shells
We report the discovery of nineteen new HI shells in the Southern Galactic
Plane Survey (SGPS). These shells, which range in radius from 40 pc to 1 kpc,
were found in the low resolution Parkes portion of the SGPS dataset, covering
Galactic longitudes l=253 deg to l=358 deg. Here we give the properties of
individual shells, including positions, physical dimensions, energetics,
masses, and possible associations. We also examine the distribution of these
shells in the Milky Way and find that several of the shells are located between
the spiral arms of the Galaxy. We offer possible explanations for this effect,
in particular that the density gradient away from spiral arms, combined with
the many generations of sequential star formation required to create large
shells, could lead to a preferential placement of shells on the trailing edges
of spiral arms. Spiral density wave theory is used in order to derive the
magnitude of the density gradient behind spiral arms. We find that the density
gradient away from spiral arms is comparable to that out of the Galactic plane
and therefore suggest that this may lead to exaggerated shell expansion away
from spiral arms and into interarm regions.Comment: 25 pages, 20 embedded EPS figures, uses emulateapj.sty, to appear in
the Astrophysical Journa
AAOmega spectroscopy of 29 351 stars in fields centered on ten Galactic globular clusters
Galactic globular clusters have been pivotal in our understanding of many
astrophysical phenomena. Here we publish the extracted stellar parameters from
a recent large spectroscopic survey of ten globular clusters. A brief review of
the project is also presented. Stellar parameters have been extracted from
individual stellar spectra using both a modified version of the Radial Velocity
Experiment (RAVE) pipeline and a pipeline based on the parameter estimation
method of RAVE. We publish here all parameters extracted from both pipelines.
We calibrate the metallicity and convert this to [Fe/H] for each star and,
furthermore, we compare the velocities and velocity dispersions of the Galactic
stars in each field to the Besan\c{c}on Galaxy model. We find that the model
does not correspond well with the data, indicating that the model is probably
of little use for comparisons with pencil beam survey data such as this.Comment: 6 pages, 5 figures, 4 tables. Accepted for publication in A&A. Data
described in tables will be available on CDS (at
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/530/A31) once publishe
The Fine-Scale Structure of the neutral Interstellar Medium in nearby Galaxies
We present an analysis of the properties of HI holes detected in 20 galaxies
that are part of "The HI Nearby Galaxy Survey" (THINGS). We detected more than
1000 holes in total in the sampled galaxies. Where they can be measured, their
sizes range from about 100 pc (our resolution limit) to about 2 kpc, their
expansion velocities range from 4 to 36 km/s, and their ages are estimated to
range between 3 and 150 Myr. The holes are found throughout the disks of the
galaxies, out to the edge of the HI; 23% of the holes fall outside R25. We find
that shear limits the age of holes in spirals (shear is less important in dwarf
galaxies) which explains why HI holes in dwarfs are rounder, on average than in
spirals. Shear, which is particularly strong in the inner part of spiral
galaxies, also explains why we find that holes outside R25 are larger and
older. We derive the scale height of the HI disk as a function of
galactocentric radius and find that the disk flares up in all galaxies. We
proceed to derive the surface and volume porosity (Q2D and Q3D) and find that
this correlates with the type of the host galaxy: later Hubble types tend to be
more porous. The size distribution of the holes in our sample follows a power
law with a slope of a ~ -2.9. Assuming that the holes are the result of massive
star formation, we derive values for the supernova rate (SNR) and star
formation rate (SFR) which scales with the SFR derived based on other tracers.
If we extrapolate the observed number of holes to include those that fall below
our resolution limit, down to holes created by a single supernova, we find that
our results are compatible with the hypothesis that HI holes result from star
formation.Comment: 142 pages, 55 figures, accepted for publication in the Astronomical
Journa
Gamma rays from dark matter annihilation in the Draco and observability at ARGO
The CACTUS experiment recently observed a gamma ray excess above 50 GeV from
the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is
dark matter dominated the gamma rays may be generated through dark matter
annihilation in the Draco halo. In the framework of the minimal supersymmetric
extension of the standard model we explore the parameter space to account for
the gamma ray signals at CACTUS. We find that the neutralino mass is
constrained to be approximately in the range between 100 GeV ~ 400 GeV and a
sharp central cuspy of the dark halo profile in Draco is necessary to explain
the CACTUS results. We then discuss further constraints on the supersymmetric
parameter space by observations at the ground based ARGO detector. It is found
that the parameter space can be strongly constrained by ARGO if no excess from
Draco is observed above 100 GeV.Comment: 15 pages, 4 figure
Observational Manifestations of the First Protogalaxies in the 21 cm Line
The absorption properties of the first low-mass protogalaxies (mini-halos)
forming at high redshifts in the 21-cm line of atomic hydrogen are considered.
The absorption properties of these protogalaxies are shown to depend strongly
on both their mass and evolutionary status. The optical depths in the line
reach 0.1-0.2 for small impact parameters of the line of sight. When a
protogalaxy being compressed, the influence of gas accretion can be seen
manifested in a non-monotonic frequency dependence of the optical depth. The
absorption characteristics in the 21-cm line are determined by the thermal and
dynamical evolution of the gas in protogalaxies. Since the theoretical line
width in the observer's reference frame is 1-6 kHz and the expected separation
between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved
using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure
- âŠ