103 research outputs found

    CMOS compatible integrated optical isolator

    Get PDF
    Herein we present our efforts to realise a novel integrated optical isolator. Utilising the principles of total internal reflection, the isolator is CMOS compatible and can be realised in a variety of materials

    Rib waveguides for mid-infrared silicon photonics

    Get PDF
    Design rules for both single-mode and polarization-independent strained silicon-on-insulator rib waveguides at the wavelength of 3.39 mu m are presented for the first time to our knowledge. Waveguide geometries with different parameters, such as waveguide height, rib width, etch depth, top oxide cover thickness and sidewall angle, have been studied in order to investigate and define design rules that will make devices suitable for mid-IR applications. Chebyshev bivariate interpolation with a standard deviation of less than 1% has been used to represent the zero-birefringence surface. Experimental results for the upper cladding stress level have been used to determine the influence of top oxide cover thickness and different levels of upper cladding stress on waveguide characteristics. Finally, the polarization-insensitive and single-mode locus is presented for different waveguide heights. (C) 2009 Optical Society of Americ

    Silicon-on-insulator mid-infrared planar concave grating based (de)multiplexer

    Get PDF
    The design and characterization of a silicon-on-insulator planar concave grating based (de) multiplexer operating at 3.8 mu m is reported. Low insertion loss (approximate to 1.6dB) and good crosstalk characteristics (approximate to 19dB) are demonstrated

    Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 mu m

    Get PDF
    The design and characterization of silicon-on-insulator mid-infrared spectrometers operating at 3.8µm is reported. The devices are fabricated on 200mm SOI wafers in a CMOS pilot line. Both arrayed waveguide grating structures and planar concave grating structures were designed and tested. Low insertion loss (1.5-2.5dB) and good crosstalk characteristics (15-20dB) are demonstrated, together with waveguide propagation losses in the range of 3 to 6dB/cm

    Tailoring the Response of Silicon Photonics Devices

    Get PDF

    Germanium implanted Bragg gratings in silicon on insulator waveguides

    Get PDF
    Integrated Bragg gratings are an interesting candidate for waveguide coupling, telecommunication applications, and for the fabrication of integrated photonic sensors. These devices have a high potential for optical integration and are compatible with CMOS processing techniques if compared to their optical fibre counterpart. In this work we present design, fabrication, and testing of Germanium ion implanted Bragg gratings in silicon on insulator (SOI). A periodic refractive index modulation is produced in a 1μm wide SOI rib waveguide by implanting Germanium ions through an SiO2 hardmask. The implantation conditions have been analysed by 3D ion implantation modelling and the induced refractive index change has been investigated on implanted samples by Rutherford Backscattering Spectroscopy (RBS) and ellipsometry analysis. An extinction ratio of up to 30dB in transmission, around the 1.55μm wavelength, has been demonstrated for Germanium implanted gratings on SOI waveguides.</p

    Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    Get PDF
    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially dependent upon the ratio Eg/kT, can limit the development of small, low-power, and low-cost integrated optical systems for the mid-IR. However, if the mid-IR optical signal could be spectrally translated to shorter wavelengths, for example within the near-infrared telecom band, photodetectors using wider bandgap semiconductors such as InGaAs or Ge could be used to eliminate prohibitive cooling requirements. Moreover, telecom band detectors typically perform with higher detectivity and faster response times when compared with their mid-IR counterparts. Here we address these challenges with a silicon-integrated approach to spectral translation, by employing efficient four-wave mixing (FWM) and large optical parametric gain in silicon nanophotonic wires

    Long wavelength photonic circuits

    No full text
    • …
    corecore