18 research outputs found
Droplet microfluidics: a tool for biology, chemistry and nanotechnology
The ability to perform laboratory operations on small scales using miniaturized devices provides numerous benefits, including reduced quantities of reagents and waste as well as increased portability and controllability of assays. These operations can involve reaction components in the solution phase and as a result, their miniaturization can be accomplished through microfluidic approaches. One such approach, droplet microfluidics, provides a high-throughput platform for a wide range of assays and approaches in chemistry, biology and nanotechnology. We highlight recent advances in the application of droplet microfluidics in chip-based technologies, such as single-cell analysis tools, small-scale cell cultures, in-droplet chemical synthesis, high-throughput drug screening, and nanodevice fabrication
Organoids and organ chips in ophthalmology
Recent advances have driven the development of stem cell-derived, self-organizing, three-dimensional miniature organs, termed organoids, which mimic different eye tissues including the retina, cornea, and lens. Organoids and engineered microfluidic organ-on-chips (organ chips) are transformative technologies that show promise in simulating the architectural and functional complexity of native organs. Accordingly, they enable exploration of facets of human disease and development not accurately recapitulated by animal models. Together, these technologies will increase our understanding of the basic physiology of different eye structures, enable
Label-free characterization of biomembranes: from structure to dynamics
We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applying such techniques to biological and model membranes for biophysical studies and biosensing applications are presented, and future prospects are discussed
Random forest and live single-cell metabolomics reveal metabolic profiles of human macrophages upon polarization
Human macrophages are innate immune cells with diverse, functionally distinct phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 macrophages. Both are involved in multiple physiological and pathological processes, including would healing, infection, and cancer. However, the metabolic differences between these phenotypes are largely unexplored at single-cell resolution. To address this knowledge gap, an untargeted live single-cell mass spectrometry-based metabolomic profiling coupled with a machine-learning data analysis approach was developed to investigate the metabolic profile of each phenotype at the single-cell level. Results show that M1 and M2 macrophages have distinct metabolic profiles, with differential levels of fatty acyls, glycerophospholipids, and sterol lipids, which are important components of plasma membrane and involved in multiple biological processes. Furthermore, we could discern several putatively annotated molecules that contribute to inflammatory response of macrophages. The combination of random forest and live single-cell metabolomics provided an in-depth profile of the metabolome of primary human M1 and M2 macrophages at the single-cell level for the first time, which will pave the way for future studies targeting the differentiation of other immune cells.Immunogenetics and cellular immunology of bacterial infectious disease