91 research outputs found

    Detection of a single cobalt microparticle with a microfabricated atomic magnetometer

    Full text link
    We present magnetic detection of a single, 2 {\mu}m diameter cobalt microparticle using an atomic magnetometer based on a microfabricated vapor cell. These results represent an improvement by a factor of 105 in terms of the detected magnetic moment over previous work using atomic magnetometers to detect magnetic microparticles. The improved sensitivity is due largely to the use of small vapor cells. In an optimized setup, we predict detection limits of 0.17 {\mu}m^3.Comment: 3 pages, 3 figure

    Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    Get PDF
    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \mu m signal, which yields powers above 500 mW (3 \mu W/mode) in the idler with spectra covering 2.8 \mu m to 3.5 \mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.Comment: 11 pages, 8 figure

    Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Full text link
    Infrared spectroscopy is a powerful tool for basic and applied science. The molecular spectral fingerprints in the 3 um to 20 um region provide a means to uniquely identify molecular structure for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy. Driven by such applications, the development of low-noise, coherent laser sources with broad, tunable coverage is a topic of great interest. Laser frequency combs possess a unique combination of precisely defined spectral lines and broad bandwidth that can enable the above-mentioned applications. Here, we leverage robust fabrication and geometrical dispersion engineering of silicon nanophotonic waveguides for coherent frequency comb generation spanning 70 THz in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides significant spectral broadening and engineered spectra targeted at specific mid-infrared bands. We use this coherent light source for dual-comb spectroscopy at 5 um.Comment: 26 pages, 5 figure

    Oil-in-Water Pickering Emulsions Stabilized with Nanostructured Biopolymers: A Venue for Templating Bacterial Cellulose

    Get PDF
    Pickering emulsions (PEs) differ from conventional emulsions in the use of solid colloidal particles as stabilizing agents instead of traditional amphiphilic molecules. Nanostructured biopolymers (NBs) emerge as a promising alternative for PE stabilization owing to their remarkable biocompatibility, abundant availability, and low cost. To explore this potential, a study is herein presented, in which cellulose nanocrystals (CNCs), both type I and type II allomorphs, and chitin nanocrystals (ChNCs) were used for stabilizing oil-in-water PEs prepared by the use of ultrasound. Sunflower oil was selected as the oil phase as it offers the advantages of being edible, renewable, and inexpensive. By utilizing ζ-potential, static light diffraction, and visual observations, we determined the optimal oil/water ratio for each type of NB to obtain stable emulsions after 14 days. The optimized PEs were used to form bacterial nanocellulose composites through emulsion templating. To our knowledge, this study represents a pioneering work in exploiting oil-in-water PEs for this approach. Additionally, it entails the first utilization of nonmercerized type II CNCs as stabilizers for PEs, while also establishing a direct comparison among the most relevant NBs. The resulting composites exhibited a unique morphology, composed of larger pores compared to standard bacterial nanocellulose aerogels. These findings highlight the notable potential of NBs as stabilizers for PEs and their ability to generate green nanocomposites with tailored properties

    Bionanofabrication as a sustainable principle for obtaining bacterial nanocellulose

    Get PDF
    La bionanofabricación hace referencia a la producción de nanomateriales a partir de seres vivos. Dentro de esta estrategia se encuentra la producción de nanocelulosa bacteriana (NCB), la cual se produce directamente a partir de determinadas bacterias en la nano escala. Este concepto surge como una alternativa sostenible, ya que se genera de manera aislada, pudiendo prescindir de las etapas de purificación requeridas en la obtención de la celulosa vegetal. La NCB inicialmente se produce en forma de hidrogel y después se puede secar por diversos métodos para tener un aerogel o un xerogel, contando cada poción con numerosos características beneficiosas que permiten su empleo en diversos campos, que van desde la industria alimentaria hasta la biomedicina. Debido a sus excelentes propiedades y enorme potencial, es necesario investigar nuevas metodologías y estrategias que ayuden a reducir el tiempo de producción, a la vez de que busquen la generación de NCB mejorada, abarcando nuevas características y funcionalidades. Bionanofabrication refers to the production of nanomaterials derived from living beings. Within this strategy, bacterial nanocellulose (BCN), finds its place, which is produced by specific bacteria directly in the nanoscale. This concept emerges as a sustainable alternative, since it is generated in its pure form, being able to dispense with the purification steps typically required to obtain cellulose of vegetable origin. BNC is initially produced as a hydrogel and can be subsequently dried throygh a variety of methos to yield an aerogel or a xerogel, each having numerous beneficial characteristics that allow it to be used across diverse fields, ranging from the food industry to biomedicine. Due to its excellent properties and enormous potential, it becomes necessary to explore new methodologies and strategies that can reduce production time while aiming for improved BNC generation, encompassing new features and functionalities

    Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna

    Get PDF
    Sea dumping of chemical warfare (CW) took place worldwide during the 20th century. Submerged CW included metal bombs and casings that have been exposed for 50-100 years of corrosion and are now known to be leaking. Therefore, the arsenic-based chemical warfare agents (CWAs), pose a potential threat to the marine ecosystems. The aim of this research was to support a need for real-data measurements for accurate risk assessments and categorization of threats originating from submerged CWAs. This has been achieved by providing a broad insight into arsenic-based CWAs acute toxicity in aquatic ecosystems. Standard tests were performed to provide a solid foundation for acute aquatic toxicity threshold estimations of CWA: Lewisite, Adamsite, Clark I, phenyldichloroarsine (PDCA), CWA-related compounds: TPA, arsenic trichloride and four arsenic-based CWA degradation products. Despite their low solubility, during the 48 h exposure, all CWA caused highly negative effects on Daphnia magna. PDCA was very toxic with 48 h D. magna LC50 at 0.36 mu g x L-1- and Lewisite with EC50 at 3.2 mu g x L-1 . Concentrations at which no immobilization effects were observed were slightly above the analytical Limits of Detection (LOD) and Quantification (LOQ). More water-soluble CWA degradation products showed no effects at concentrations up to 100 mg x L-1.Peer reviewe

    Alu elements mediate MYB gene tandem duplication in human T-ALL

    Get PDF
    Recent studies have demonstrated that the MYB oncogene is frequently duplicated in human T cell acute lymphoblastic leukemia (T-ALL). We find that the human MYB locus is flanked by 257-bp Alu repeats and that the duplication is mediated somatically by homologous recombination between the flanking Alu elements on sister chromatids. Nested long-range PCR analysis indicated a low frequency of homologous recombination leading to MYB tandem duplication in the peripheral blood mononuclear cells of ∼50% of healthy individuals, none of whom had a MYB duplication in the germline. We conclude that Alu-mediated MYB tandem duplication occurs at low frequency during normal thymocyte development and is clonally selected during the molecular pathogenesis of human T-ALL
    corecore