7 research outputs found
Pd(II) complexes with 3,3'-substituted bipyridine ligands: Synthesis, crystal structure, DFT calculations and catalytic studies in compressed carbon dioxide
10.1016/j.ica.2013.09.05
Recommended from our members
Mononuclear Pt(II) and Pd(II) 1,4-dithiolato complexes. Crystal structures of [Pt((−) DIOS) (PPh3)2] and [Pd(S(CH2) 4S)(Ph2P(CH2) 3PPh2)]. Application in styrene hydroformylation
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = −S(CH2)4S−, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%
Recommended from our members
Rhodium cationic complexes using dithioethers as chiral ligands. Application in styrene hydroformylation
Addition of the dithioethers (−)-DIOSR2 (R=Me, iPr) (2,3-O-isopropylidene-1,4-dimethyl (and diisopropyl) thioether-L-threitol) to a dichloromethane solution of [Rh(COD)2]ClO4 (COD=1,5-cyclooctadiene) yielded the mononuclear complexes [Rh(COD)(DIOSR2)]ClO4. X-ray diffraction methods showed that the [Rh(COD)(DIOSiPr2)]ClO4 complex had an square-planar coordination geometry at the rhodium atom with the iPr groups in anti position. Cyclooctadiene complexes react with carbon monoxide to form dinuclear tetracarbonylated complexes [(CO)2Rh(μ-DIOSR2)2(CO)2](ClO4)2. [Rh(COD)(DIOSR2)]ClO4 are active catalyst precursors in styrene hydroformylation at 30 atm and 65°C which give conversions of up to 99% with a regioselectivity in 2-phenylpropanal as high as 74%. In all cases enantioselectivities are low
Chromium complexes with tridentate NN'O Schiff base ligands as catalysts for the coupling of CO2 and epoxides
10.1016/j.molcata.2013.11.026New Cr(III) hexacoordinated complexes with tridentate NN'O-donor Schiff base ligands, M(NN'O)2Cl, have been prepared. They form active catalytic systems for the coupling of epoxides and carbon dioxide in the presence of co-catalysts. Best results were obtained with the complex with N-(2-pyridylmethyl)-3,5-di-tert-butyl-salicylaldimine (1) ligand and a co-catalyst. Cyclohexene oxide reacts with carbon dioxide in the presence of these catalysts to form mixtures of polycarbonate (PC) (productivity up to ca. 900 g PC/g Cr) and cyclic carbonate depending on the co-catalyst and conditions employed. Cyclopentene, styrene and propylene oxides form selectively the cyclic carbonates at the conditions studied (epoxide conversion up to 97%). Although some of the co-catalysts are also active for the cycloaddition, the presence of both complex and co-catalyst has proved to be beneficial