46 research outputs found

    Managed aquifer recharge in South India : what to expect from small percolation tanks in hard rock ?

    No full text
    Many states in India are currently facing general overuse of their groundwater resources mainly due to growing demand for irrigated agriculture. Groundwater levels are declining despite water harvesting measures to enhance aquifer recharge which are supported on a massive scale by watershed development programmes. New programmes are being implemented to improve artificial percolation (i.e., managed aquifer recharge, MAR) although the impact of former measures on aquifer recharge has not yet been assessed. It is therefore crucial to increase our understanding of MAR to successfully overcome the threat of groundwater scarcity in the near future. This paper scrutinizes the ability of a typical percolation tank to recharge the aquifer using a comprehensive approach combining water accounting, geochemistry and hydrodynamic modelling. Over 2 years of observation, the percolation efficiency (percolated fraction of stored water) of the tank ranged from 57% to 63%, the rest being evaporated. Modelling showed that the percolated water was mostly (80%) pumped straight back by the neighbouring boreholes, limiting the area of MAR influence but increasing percolation efficiency

    Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland

    No full text
    Compartmentalization is a prerequisite to understand large wetlands that receive water from several sources. However, it faces the heterogeneity in space and time, resulting from physical, chemical and biological processes that are specific to wetlands. The Pantanal is a vast seasonally flooded continental wetland located in the centre of South America. The chemical composition of the waters that supply the Pantanal (70 rivers) has been studied in order to establish a compartmentalization of the wetland based on soil-water interactions. A PCA-based EMMA (End-Members Mixing Analysis) procedure shows that the chemistry of the rivers can be viewed as a mixture of 3 end-members, influenced by lithology and land use, and delimiting large regions. Although the chemical composition of the end-members changed between dry and wet seasons, their spatial distribution was maintained. The results were extended to the floodplain by simple tributary mixing calculation according to the hydrographical network and to the areas of influence for each river when in overflow conditions. The resulting map highlights areas of high geochemical contrast on either side of the river Cuiaba in the north, and of the rivers Aquidauana and Abobral in the south. The PCA-based treatment on a sampling conducted in the Nhecolandia, a large sub region of the Pantanal, allowed the identification and ordering of the processes that control the geochemical variability of the surface waters. Despite an enormous variability in electrical conductivity and pH, all data collected were in agreement with an evaporation process of the Taquari River water, which supplies the region. Evaporation and associated saline precipitations (Mg-calcite, Mg-silicates K-silicates) explained more than 77% of the total variability in the chemistry of the regional surface water sampling.Sao Paulo Research Foundation (FAPESP)FAPESP (Sao Paulo Research Foundation) [2008/09086-7, 2008/58089-9, 2011/12770-0]INSU-Ec2co (National Institute of Sciences of the Universe)INSUEc2co (National Institute of Sciences of the Universe)UFMS (Federal University of South Mato-Grosso)UFMS (Federal University of South MatoGrosso)FAPESPFAPESP [2009/53524-1]CAPES (Coordination of Improvement of Higher Education Personnel)CAPES (Coordination of Improvement of Higher Education Personnel

    Isolation and enrichment of newborn and adult skin stem cells of the interfollicular epidermis

    No full text
    The interfollicular epidermis regenerates from a heterogeneous population of basal cells undergoing either self-renewal or terminal differentiation, thereby balancing cell loss in tissue turnover or in wound repair. In this chapter, we describe a reliable and simple method for isolating interfollicular epithelial stem cells from the skin of newborn mice or from tail and ear skin of adult mice using fluorescence-activated cell sorting (FACS). We also provide a detailed protocol for culturing interfollicular epidermal stem cells and to assess their proliferative potential and self-renewing ability. These techniques are useful for directly evaluating epidermal stem cell function in normal mice under different conditions or in genetically modified mouse models
    corecore