15 research outputs found

    How lipids contribute to autophagosome biogenesis, a critical process in plant responses to stresses

    Get PDF
    Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed

    Autophagy controls carbon, nitrogen, and redox homeostasis in plants

    No full text
    During leaf senescence, autophagy is essential for nutrient recycling and remobilization, and for plant productivity. Metabolome and transcriptome studies performed on autophagy mutants revealed major disorders in nitrogen, carbon, and redox metabolisms. Analysis showed that autophagy mutants are depleted of antioxidant anthocyanin molecules. Transcriptome analysis revealed that the depletion of anthocyanin is due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in the flavonoid pathway. The hyperaccumulation of salicylic acid and the depletion of anthocyanin in autophagy mutants might result from the rerouting of carbon resources in the phenylpropanoid pathway and amplify oxidative stress in autophagy mutants

    Current understanding of leaf senescence in rice

    No full text
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll break-down, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summa-rizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.11Nsciescopu

    Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds.

    Get PDF
    Seed formation is an important step of plant development which depends on nutrient allocation. Uptake from soil is an obvious source of nutrients which mainly occurs during vegetative stage. Because seed filling and leaf senescence are synchronized, subsequent mobilization of nutrients from vegetative organs also play an essential role in nutrient use efficiency, providing source-sink relationships. However, nutrient accumulation during the formation of seeds may be limited by their availability in source tissues. While several mechanisms contributing to make leaf macronutrients available were already described, little is known regarding micronutrients such as metals. Autophagy, which is involved in nutrient recycling, was already shown to play a critical role in nitrogen remobilization to seeds during leaf senescence. Because it is a non-specific mechanism, it could also control remobilization of metals. This article reviews actors and processes involved in metal remobilization with emphasis on autophagy and methodology to study metal fluxes inside the plant. A better understanding of metal remobilization is needed to improve metal use efficiency in the context of biofortification

    Plant senescence: how plants know when and how to die

    No full text
    Virtually all of the cells, tissues and organs in plants age, senesce and eventually die. Senescence is regarded as an evolutionarily acquired process that is critical for plant fitness, and understanding its detailed molecular nature is not only fundamental but also pivotal for the improvement of crop yield and postharvest storage. Impressive progress has been made in revealing new molecular regulatory mechanisms in recent years. In this special issue, reviews span this emerging knowledge-derived from unique biological processes in different types of plant senescence- A nd highlight key molecular pathways and network-based regulatory mechanisms, as well as their evolutionary implications. The issue also addresses future research perspectives, including new technologies and approaches. © 2018 The Author(s).TRU

    Editorial: Sugars and Autophagy in Plants

    No full text
    status: publishe

    Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis

    No full text
    Processes allowing the recycling of organic nitrogen and export to young leaves and seeds are important determinants of plant yield, especially when plants are nitrate-limited. Because autophagy is induced during leaf ageing and in response to nitrogen starvation, its role in nitrogen remobilization was suspected. It was recently shown that autophagy participates in the trafficking of Rubisco-containing bodies to the vacuole. To investigate the role of autophagy in nitrogen remobilization, several autophagy-defective (atg) Arabidopsis mutants were grown under low and high nitrate supplies and labeled with at the vegetative stage in order to determine 15N partitioning in seeds at harvest. Because atg mutants displayed earlier and more rapid leaf senescence than wild type, we investigated whether their defects in nitrogen remobilization were related to premature leaf cell death by studying the stay-green atg5.sid2 and atg5.NahG mutants. Results showed that nitrogen remobilization efficiency was significantly lower in all the atg mutants irrespective of biomass defects, harvest index reduction, leaf senescence phenotypes and nitrogen conditions. We conclude that autophagy core machinery is needed for nitrogen remobilization and seed filling

    Absorption et assimilation du nitrate et recyclage de l'azote organique chez les plantes: interet pour le colza

    No full text
    CABI:20073191056International audienceBrassica napus (winter oilseed rape) is an important agricultural crop cultivated for oil, which can be used as an edible product or for industrial application, bioester for example. Despite the very high capacity of oilseed rape to take up nitrate, many authors have reported a very low recovery of nitrogen in field-grown crops whatever the level of N fertilizer applied. In this manuscript we describe the main biochemical and molecular mechanisms involved in nitrate uptake, reduction, assimilation and N recycling during the reproductive period to gain sufficient knowledge to determine the relative importance of environmental and genetic factors determining N management in plants. This understanding will provide the necessary background for improvement of oilseed rape varieties

    Characterization of Markers to Determine the Extent and Variability of Leaf Senescence in Arabidopsis. A Metabolic Profiling Approach

    No full text
    Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 × Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of γ-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed
    corecore