41 research outputs found

    The NEO Surveyor Near Earth Asteroid Known Object Model

    Full text link
    The known near-Earth object (NEO) population consists of over 32,000 objects, with a yearly discovery rate of over 3000 NEOs per year. An essential component of the next generation of NEO surveys is an understanding of the population of known objects, including an accounting of the discovery rate per year as a function of size. Using a near-Earth asteroid (NEA) reference model developed for NASA's NEO Surveyor (NEOS) mission and a model of the major current and historical ground-based surveys, an estimate of the current NEA survey completeness as a function of size and absolute magnitude has been determined (termed the Known Object Model; KOM). This allows for understanding of the intersection of the known catalog of NEAs and the objects expected to be observed by NEOS. The current NEA population is found to be 38%\sim38\% complete for objects larger than 140m, consistent with estimates by Harris & Chodas (2021). NEOS is expected to catalog more than two thirds of the NEAs larger than 140m, resulting in 76%\sim76\% of NEAs cataloged at the end of its 5 year nominal survey (Mainzer et al, 2023}, making significant progress towards the US Congressional mandate. The KOM estimates that 77%\sim77\% of the currently cataloged objects will be detected by NEOS, with those not detected contributing 9%\sim9\% to the final completeness at the end its 5 year mission. This model allows for placing the NEO Surveyor mission in the context of current surveys to more completely assess the progress toward the goal of cataloging the population of hazardous asteroids.Comment: 27 pages, 18 figures, 3 tables. Accepted for publication in Planetary Science Journal (PSJ

    WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs

    Get PDF
    On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature

    Size and Albedo Constraints for (152830) Dinkinesh Using WISE Data

    Full text link
    Probing small main-belt asteroids provides insight into their formation and evolution through multiple dynamical and collisional processes. These asteroids also overlap in size with the potentially hazardous near-earth object population and supply the majority of these objects. The Lucy mission will provide an opportunity for study of a small main-belt asteroid, (152830) Dinkinesh. The spacecraft will perform a flyby of this object on November 1, 2023, in preparation for its mission to the Jupiter Trojan asteroids. We employed aperture photometry on stacked frames of Dinkinesh obtained by the Wide-field-Infrared Survey Explorer and performed thermal modeling on a detection at 12 μ\mum to compute diameter and albedo values. Through this method, we determined Dinkinesh has an effective spherical diameter of 0.760.21+0.110.76^{+0.11}_{-0.21} km and a visual geometric albedo of 0.270.06+0.250.27^{+0.25}_{-0.06} at the 16th and 84th percentiles. This albedo is consistent with typical stony (S-type) asteroids.Comment: Submitted to Astrophysical Journal Letter

    WISE/NEOWISE Observations of Comet 103P/Hartley 2

    Get PDF
    We report results based on mid-infrared photometry of comet 103P/Hartley 2 taken during 2010 May 4-13 (when the comet was at a heliocentric distance of 2.3 AU, and an observer distance of 2.0 AU) by the Wide-field Infrared Survey Explorer. Photometry of the coma at 22 μm and data from the University of Hawaii 2.2 m telescope obtained on 2010 May 22 provide constraints on the dust particle size distribution, d log n/d log m, yielding power-law slope values of alpha = –0.97 ± 0.10, steeper than that found for the inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. The extracted nucleus signal at 12 μm is consistent with a body of average spherical radius of 0.6 ± 0.2 km (one standard deviation), assuming a beaming parameter of 1.2. The 4.6 μm band signal in excess of dust and nucleus reflected and thermal contributions may be attributed to carbon monoxide or carbon dioxide emission lines and provides limits and estimates of species production. Derived carbon dioxide coma production rates are 3.5(± 0.9) × 10^(24) molecules per second. Analyses of the trail signal present in the stacked image with an effective exposure time of 158.4 s yields optical-depth values near 9 × 10^(–10) at a delta mean anomaly of 0.2 deg trailing the comet nucleus, in both 12 and 22 μm bands. A minimum chi-squared analysis of the dust trail position yields a beta-parameter value of 1.0 × 10^(–4), consistent with a derived mean trail-grain diameter of 1.1/ρ cm for grains of ρ g cm^(–3) density. This leads to a total detected trail mass of at least 4 × 10^(10) ρ kg

    The NEOWISE-Discovered Comet Population and the CO+CO_2 production rates

    Get PDF
    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO_2 production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO_2 production, as well as possible differences in the sizes of long and short period comet nuclei

    WISE/NEOWISE observations of Active Bodies in the Main Belt

    Get PDF
    We report results based on mid-infrared photometry of 5 active main belt objects (AMBOs) detected by the Wide-field Infrared Survey Explorer (WISE) spacecraft. Four of these bodies, P/2010 R2 (La Sagra), 133P/Elst-Pizarro, (596) Scheila, and 176P/LINEAR, showed no signs of activity at the time of the observations, allowing the WISE detections to place firm constraints on their diameters and albedos. Geometric albedos were in the range of a few percent, and on the order of other measured comet nuclei. P/2010 A2 was observed on April 2-3, 2010, three months after its peak activity. Photometry of the coma at 12 and 22 {\mu}m combined with ground-based visible-wavelength measurements provides constraints on the dust particle mass distribution (PMD), dlogn/dlogm, yielding power-law slope values of {\alpha} = -0.5 +/- 0.1. This PMD is considerably more shallow than that found for other comets, in particular inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. It is similar to the PMD seen for 9P/Tempel 1 in the immediate aftermath of the Deep Impact experiment. Upper limits for CO2 & CO production are also provided for each AMBO and compared with revised production numbers for WISE observations of 103P/Hartley 2.Comment: 32 Pages, including 5 Figure

    Centaurs and Scattered Disk Objects in the Thermal Infrared: Analysis of WISE/NEOWISE Observations

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) observed 52 Centaurs and scattered disk objects (SDOs) in the thermal infrared, including 15 new discoveries. We present analyses of these observations to estimate sizes and mean optical albedos. We find mean albedos of 0.08 ± 0.04 for the entire data set. Thermal fits yield average beaming parameters of 0.9 ± 0.2 that are similar for both SDO and Centaur sub-classes. Biased cumulative size distributions yield size-frequency distribution power law indices of ~–1.7 ± 0.3. The data also reveal a relation between albedo and color at the 3σ level. No significant relation between diameter and albedos is found

    The Near-Earth Object Surveyor Mission

    Full text link
    The Near-Earth Object (NEO) Surveyor mission is a NASA observatory designed to discover and characterize near-Earth asteroids and comets. The mission's primary objective is to find the majority of objects large enough to cause severe regional impact damage (>>140 m in effective spherical diameter) within its five-year baseline survey. Operating at the Sun-Earth L1 Lagrange point, the mission will survey to within 45 degrees of the Sun in an effort to find the objects in the most Earth-like orbits. The survey cadence is optimized to provide observational arcs long enough to reliably distinguish near-Earth objects from more distant small bodies that cannot pose an impact hazard. Over the course of its survey, NEO Surveyor will discover \sim200,000 - 300,000 new NEOs down to sizes as small as \sim10 m and thousands of comets, significantly improving our understanding of the probability of an Earth impact over the next century.Comment: accepted to PS
    corecore