134 research outputs found

    Local seismic cultures: the use of timber frame structures in the south of Portugal

    Get PDF
    Given the fact that using timber frame structures has proven to improve the seismic behavior of vernacular architecture, as has been reported in past earthquakes in many countries, its preservation as a traditional earthquake resistant practice is important. This paper firstly intends to evaluate whether the use of timber frames as a traditional seismic resistant technique for vernacular architecture in the South of Portugal, traditionally a seismic region, is still active. Secondly, the city of Vila Real de Santo António was selected as a case study because it also followed a Pombaline development contemporary to the reconstruction of Lisbon. The plan included the provision of timber frame partition walls for some of the buildings and, thus, an overview of the type of constructions originally conceived is provided. Finally, the alterations done in the original constructions and the current state of the city center are described and the effect of these changes on the seismic vulnerability of the city is discussed.The authors wish to express their gratitude to the Portuguese Science and Technology Foundation (FCT) for the scholarship granted in the scope of the research project 'SEISMIC-V-Vernacular Seismic Culture in Portugal' (PTDC/ATP-AQI/3934/2012)

    3D models of pelvic floor muscles developed by manual segmentation to FEM

    Get PDF
    The female pelvic floor is an understudied region of the body from the biomechanical perspective. MRI has been used in the diagnostic evaluation of the pelvic floor dysfunctions. Static images show their morphology while dynamic images show the functional changes that occur on straining and contraction of the pelvic floor. In the present work, MR images contribute to generate 3D solids of pelvic floor muscles through manual segmentation. To study the biomechanical behavior of pelvic floor muscles the Finite Element Method (FEM) would be applied to these 3D solids, contributing to analyze this complex musculature structure. The purpose of this study was to reconstruct tridimensional pelvic floor muscle by manual segmentation and apply FEM. The manual segmentation was made within commercial software. MR images were acquired from the subject supine position, using a 3.0 T system. Field view of the exam was 25×25 cm, 2 mm thick with no gap. The images were acquired in DICOM format, and later converted jpeg format. Twenty consecutive images obtained in the axial plane for each woman were used to construct a 3D model from each of the 8 women. From this 3D reconstruction made through splines in each image, changes in the pubovisceral muscle (a part from the pelvic floor muscles) from the pubis to coccyx were edited. All the pubovisceral muscles edited were exported in step format to the FE analyses software ABAQUS. Finite element meshes were generated for each woman pubovisceral muscle. According to literature soft tissues properties, FE analyses were established to better understand pelvic floor muscles biomechanics. Manual segmentation of the pelvic floor muscles tissues generated very realistic completely different volumetric solids for each woman. It is a very sluggish technique and the nonlinear shape of the pelvic floor makes difficult the utilization of other automatic segmentation

    Platelet-rich plasma induces post-natal maturation of immature articular cartilage and correlates with LOXL1 activation

    Get PDF
    Platelet-­rich plasma (PRP) is used to stimulate the repair of acute and chronic cartilage damage even though there is no definitive evidence of how this is achieved. Chondrocytes in injured and diseased situations frequently re­ express phenotypic biomarkers of immature cartilage so tissue maturation is a potential pathway for restoration of normal structure and function. We used an in vitro model of growth factor­induced maturation to perform a comparative study in order to determine whether PRP can also induce this specific form of remodeling that is characterised by increased cellular proliferation and tissue stiffness. Gene expression patterns specific for maturation were mimicked in PRP treated cartilage, with chondromodulin, collagen types II/X downregulated, deiodinase II and netrin­1 upregulated. PRP increased cartilage surface cell density 1.5­fold (P < 0.05), confirmed by bromodeoxyuridine incorporation and proportionate increases in proliferating cell nuclear antigen gene expression. Atomic force microscopy analysis of PRP and growth factor treated cartilage gave a 5­fold increase in stiffness correlating with a 10­fold upregulation of lysyl oxidase like­1 gene expression (P < 0.001). These data show PRP induces key aspects of post­natal maturation in immature cartilage and provides the basis to evaluate a new biological rationale for its activity when used clinically to initiate joint repair

    Mre11-Rad50 Promotes Rapid Repair of DNA Damage in the Polyploid Archaeon Haloferax volcanii by Restraining Homologous Recombination

    Get PDF
    Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species

    Protective Coupling of Mitochondrial Function and Protein Synthesis via the eIF2α Kinase GCN-2

    Get PDF
    Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2–dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2–dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPRmt
    corecore