76 research outputs found

    Strong-Motion Characteristics and Visual Damage Assessment Around Seismic Stations in Kathmandu After the 2015 Gorkha, Nepal, Earthquake

    Get PDF
    A rapid visual damage assessment of buildings around four strong-motion seismic stations in Kathmandu Valley was carried out after the damaging Gorkha, Nepal earthquake (Mw7.8) of 25 April 2015. The waveforms of the main shock recorded at these stations were compared with the damage to buildings around the stations. The damage was found to be related to strong-motion characteristics of the earthquake. A dominance of long-period oscillation could be observed in the records. The damage to low-rise buildings in the valley was less than anticipated from an earthquake of this magnitude given that the majority of buildings were built without proper engineering consideration. The acceleration response spectra of one of the sedimentary sites show high response in the 1–2 s period range, and nearly 10% of the buildings, which were all low-rise, suffered damage around this site

    Evaluation for hypocenter estimation error in the southwestern Kuril trench using Japan and Russia joint seismic data

    Get PDF
    The southwestern Kuril trench is seismically active due to the subduction of the Pacific plate. Great earthquakes in this zone have frequently induced fatal disasters. Seismic monitoring and hypocenter catalogs provide fundamental information on earthquake occurrence and disaster mitigation. Real-time hypocenter and magnitude estimates are extremely crucial data for tsunami warning systems. However, this region is located in the international border zone between Japan and Russia. The Japan Meteorological Agency and Russian Academy of Sciences have routinely determined hypocenters and issued earthquake information independently. Waveform data have not yet been exchanged internationally in real time. Here, we evaluated how a hypothetical Japan-Russia joint seismic network could potentially improve the hypocenter estimation accuracy. Experiments using numerical and observed data indicated that the joint network extended the distance over which hypocenters can be accurately determined over 100 km eastward compared to the Japan network only. This fact suggests that joint seismic data have the potential to improve the hypocenter accuracy in this region, which would provide improved performance in gathering disaster information at the moment of a tsunami warning

    広域地震観測網で得られた有珠山2000年噴火に伴う地震活動 : 手動検測による解析結果

    No full text

    Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    Get PDF
    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous stud-ies have shown that the sediments are ~600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1–0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses, from 155 to 440m. These models also show high velocity contrast at the bedrock depth which results in significant wave amplification

    Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Get PDF
    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s

    Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    Get PDF
    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law’s p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region

    Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    Get PDF
    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region

    The Development of a Program to Merge JMA Data into WIN System Data and Its Performance Test

    No full text
    <短報

    An intraplate slow earthquake observed by a dense GPS network in Hokkaido, northernmost Japan

    Get PDF
    An intraplate slow earthquake was detected in northernmost Hokkaido, Japan, by a dense network of the global navigation satellite system. Transient abnormal acceleration of <12 mm was observed during the period 2012 July to 2013 January (similar to 5.5 months) at several sites. The spatial displacement distribution suggests that a localized tectonic event caused localized deformation. Estimated fault parameter indicates very shallow-dip reverse faulting in the uppermost crust, with a total seismic moment of 1.75E + 17 N m (M-w 5.4). This fault geometry is probably consistent with detachment structure indicated by geological studies. A simultaneous earthquake swarm with the maximum magnitude M4.1 suggests a possibility that the slow slip triggered the seismic activity for unknown reasons. This slow earthquake is slower than its moment would indicate, with a duration-magnitude scaling relationship unlike either regular earthquakes or subduction slow slip events. This result indicates that even if the area is under different physical property from subduction zones, slow earthquake can occur by some causes. Slow earthquakes exist in remote regions away from subduction zones and might play an important role in strain release and tectonic activity
    corecore