44 research outputs found

    Adaptive Cation Pillar Effects Achieving High Capacity in Li-Rich Layered Oxide, Li₂MnO₃-LiMeO₂ (Me = Ni, Co, Mn)

    Get PDF
    リチウムイオン電池正極の低結晶層状構造を支える2種類の支柱. 京都大学プレスリリース. 2022-09-05.Intensive research is underway to further enhance the performance of lithium-ion batteries (LIBs). To increase the capacity of positive electrode materials, Li-rich layered oxides (LLO) are attracting attention but have not yet been put to practical use. The structural mechanisms through which LLO materials exhibit higher capacity than conventional materials remain unclear because their disordered phases make it difficult to obtain structural information by conventional analysis. The X-ray total scattering analysis reveals a disordered structure consisting of metal ions in octahedral and tetrahedral sites of Li layers as a result of cation mixing after the extraction of Li ions. Metal ions in octahedral sites act as rigid pillars. The metal ions move to the tetrahedral site of the Li layer, which functions as a Li-layer pillar during Li extraction, and returns to the metal site during Li insertion, facilitating Li diffusion as an adaptive pillar. Adaptive pillars are the specific structural features that differ from those of the conventional layered materials, and their effects are responsible for the high capacity of LLO materials. An essential understanding of the pillar effects will contribute to design guidelines for intercalation-type positive electrodes for next-generation LIBs

    Electronic state analysis of Li2RuO3 positive electrode for lithium ion secondary battery

    Get PDF
    An investigation was made on the electronic structure of 4d transition metal layered oxide material of Li2RuO3 using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The intensity of O K pre-edge peak increased for Li ion extracted samples, suggesting increased ligand holes. The Ru 3d XPS spectrum suggested the variation of local structure around Ru ions by extraction of Li ions. We conclude that the delithiation from Li2RuO3 is charge-compensated by O anions, and that the creation of the ligand holes reorganizes electronic structures composed of highly hybridized Ru 4d and O 2p orbitals

    Disordered Cubic Spinel Structure in the Delithiated Li2MnO3 Revealed by Difference Pair Distribution Function Analysis

    Get PDF
    An archetypical Li-rich layered oxide, Li2MnO3, shows a large initial charge capacity of ~350 mAh g-1 with little oxidation of the constituent Mn ions, yet, the crystal structure of delithiated Li2MnO3 is still unclarified because the structural disorder induced by the considerable Li extraction makes the analysis challenging. X-ray pair distribution function (PDF) analysis is a powerful tool to experimentally elucidate the structure of the disordered phase. Here, we conducted a comprehensive analysis with a focus on PDF analysis in combination with the X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS) to reveal the disordered crystalline structure of the electrochemically delithiated Li2MnO3. The XRPD and TEM analyses clarified the formation of a low-crystallinity phase in the light of the average structure. The XAS and PDF analyses further revealed that the MnO6–based framework was rearranged with maintaining the MnO6 octahedral coordination after the initial charge. The difference pair distribution function (d-PDF) technique was therefore employed to extract the structural information of the low-crystallinity disordered phase. The delithiated phase was found to have a structure similar to the cubic spinel, LiMn2O4, rather than that of delithiated LiMn2O4 (λ-MnO2). In addition, the middle-range order of the delithiated phase deteriorated after the charge, indicating a decrease of coherent domain size to a single nm order. The composite structure formed after the first charge, therefore, consists of the disordered cubic spinel structure and unreacted Li2MnO3. The formation of the composite structure “activates” the electrode material structurally and eventually induces characteristic large capacity of this material

    Adaptive Cation Pillar Effects Achieving High Capacity in Li-Rich Layered Oxide, Li2MnO3-LiMeO2 (Me = Ni, Co, Mn)

    Get PDF
    Intensive research is underway to further enhance the performance of lithium-ion batteries (LIBs). To increase the capacity of positive electrode materials, Li-rich layered oxides (LLO) are attracting attention but have not yet been put to practical use. The structural mechanisms through which LLO materials exhibit higher capacity than conventional materials remain unclear because their disordered phases make it difficult to obtain structural information by conventional analysis. The X-ray total scattering analysis reveals a disordered structure consisting of metal ions in octahedral and tetrahedral sites of Li layers as a result of cation mixing after the extraction of Li ions. Metal ions in octahedral sites act as rigid pillars. The metal ions move to the tetrahedral site of the Li layer, which functions as a Li-layer pillar during Li extraction, and returns to the metal site during Li insertion, facilitating Li diffusion as an adaptive pillar. Adaptive pillars are the specific structural features that differ from those of the conventional layered materials, and their effects are responsible for the high capacity of LLO materials. An essential understanding of the pillar effects will contribute to design guidelines for intercalation-type positive electrodes for next-generation LIBs

    Evaluation of the Electronic and Local Structure of Mn in Proton-Conducting Oxide, Ca(Zr,Mn)O3-δ, To Elucidate a Direct Hydrogen-Dissolution Reaction

    Get PDF
    The protonation mechanism in Mn-doped CaZrO3 (CZM), which involves a direct hydrogen dissolution from the surrounding H2 gas, was investigated by thermogravimetry (TG) and X-ray absorption spectroscopy (XAS). The TG results implied the formation of oxygen vacancies in a H2 atmosphere. The Mn K-edge XAS spectra indicated a reduction of the Mn ions and local structure variations around the Mn ion, but the Zr K-edge spectra were independent of the surrounding atmosphere. The amount of oxygen vacancies was smaller with respect to the reduction of the Mn ions, suggesting direct dissolution of hydrogen. Unlike many typical perovskite-type proton conductors, protonation by direct dissolution of hydrogen and not hydration was the predominant reaction in Mn-doped CaZrO3. Our experimental results demonstrated that the hydration reaction was suppressed because the oxygen vacancy was stable in the distorted ZrO6 symmetry in the CaZrO3 crystal host, whereas protonation proceeded by the direct dissolution of hydrogen stabilizing near the Mn ions in the interstitial sites at the distorted MnO6 octahedron symmetry. The experimental results showed that the structural configurations around dopants play important roles in the stabilization of protons in perovskite-type CZM materials. We demonstrated a new group of proton conductors that can overcome issues with conventional proton conductors by utilizing the direct hydrogen dissolution reaction

    Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy

    Get PDF
    Li-rich layered oxides have attracted attention as promising positive electrode materials for next-generation lithium-ion secondary batteries because of their high energy storage capacity. The participation of the oxygen anion has been hypothesized to contribute to these oxides' high capacity. In the present study, we used O K-edge and Mn L-edge X-ray absorption spectroscopy (XAS) to study the reversible redox reactions that occur in single-phase Li-rich layered manganese oxide, Li2MnO3. We semiquantitatively analyzed the oxygen and manganese reactions by dividing the charge/discharge voltage region into two parts. The O K-edge XAS indicated that the electrons at the oxygen site reversibly contributed to the charge compensation throughout the charge/discharge processes at operating voltages between 2.0 and 4.8 V vs. Li+/Li0. The Mn L-edge XAS spectra indicated that the Mn redox reaction occurred only in the lower-voltage region. Thus, at higher potentials, the electrons, mainly at the oxygen site, contributed to the charge compensation. Peaks whose energies were similar to peroxide appeared in and then disappeared from the O K-edge spectra obtained during the reversible redox cycles. These results indicate that the reorganization of the oxygen network in the crystal structure affects the redox components. By using two kinds of detection modes with different probing depths in XAS measurements, it was found that these redox reactions are bulk phenomena in the electrode

    The E3 Ubiquitin Ligase Activity of Trip12 Is Essential for Mouse Embryogenesis

    Get PDF
    Protein ubiquitination is a post-translational protein modification that regulates many biological conditions [1], [2], [3], [4]. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1 [5], [6]. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12mt/mt) that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12mt/mt embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16 [7], [8], [9], [10]. In contrast, Trip12mt/mt ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12mt/mt ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex) and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development

    当院における経皮的心肺補助装置の導入状況と予後について: 症例集積研究

    Get PDF
    京都府立医科大学附属北部医療センター循環器内科京都府立医科大学附属北部医療センター臨床工学科Department of Cardiovascular Medicine, North Medical Center, Kyoto Prefectural University of MedicineDepartment of Clinical Engineering, North Medical Center, Kyoto Prefectural University of Medicine経皮的心肺補助は、重症心不全(急性心筋梗塞、心筋症、劇症型心筋炎など)、開心術後の低拍出症候群、大血管手術(胸部下行大動脈瘤、胸腹部大動脈瘤)による補助循環や重症呼吸不全などの病態に用いられているが、近年救急医療の現場、とくに心肺停止患者への適用が急増している。しかしながら、装置が高価であることや導入にマンパワーを要する治療法であることから、導入をためらっている施設も少なくない。また、適用基準や使用方法についても各施設によってさまざまである。経皮的心肺補助装置は2008 年に当院に導入され、2018 年3 月までの約10 年間で16 例に用いられた。年齢の中央値は65.5 歳で、男性が12 例だった。原因疾患として急性冠症候群/ 急性心筋梗塞が11 例、劇症型を含む心筋炎が4 例だった。そのうち2 例は現在も当院外来に通院中であり、長期生存率は12.5% であった。高齢化率の高い丹後医療圏におけるPCPS の適用基準にまつわる問題点を挙げ、使用の心得を記述し、京都府下の病院におけるPCPS 導入状況を俯瞰する

    仮性動脈瘤による静脈圧排が原因と考えられた下肢浮腫の1例

    Get PDF
    京都府立医科大学附属北部医療センター循環器内科Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine North Medical Center症例は73歳女性。安静時胸痛を認め、不安定狭心症を疑い、冠動脈造影検査にて3枝病変を認めた。カテーテル治療を選択し、左大腿動脈より6Fr シースを挿入し、経皮的冠動脈ステント留置術を施行した。止血デバイスを用い止血を行い、穿刺部に問題なく術翌日に退院した。退院7 日後より左下肢の腫脹を認め、血管エコー検査にて穿刺部に仮性動脈瘤を認めた。カテーテル後の下肢浮腫の原因として仮性動脈瘤に留意すべきと考える
    corecore