19 research outputs found

    The Runx1 Transcription Factor Inhibits the Differentiation of Naive CD4+ T Cells into the Th2 Lineage by Repressing GATA3 Expression

    Get PDF
    Differentiation of naive CD4+ T cells into helper T (Th) cells is controlled by a combination of several transcriptional factors. In this study, we examined the functional role of the Runx1 transcription factor in Th cell differentiation. Naive T cells from transgenic mice expressing a dominant interfering form of Runx1 exhibited enhanced interleukin 4 production and efficient Th2 differentiation. In contrast, transduction of Runx1 into wild-type T cells caused a complete attenuation of Th2 differentiation and was accompanied by the cessation of GATA3 expression. Furthermore, endogenous expression of Runx1 in naive T cells declined after T cell receptor stimulation, at the same time that expression of GATA3 increased. We conclude that Runx1 plays a novel role as a negative regulator of GATA3 expression, thereby inhibiting the Th2 cell differentiation

    Degenerative changes in the appendicular joints of ancient human populations from the Japan Islands

    Get PDF
    Degenerative changes in six major limb joints were investigated to compare their prevalence among five ancient skeletal populations from the Japan Islands. The populations assessed in this study consisted of the farmers in the northern Kyushu/Yamaguchi area and the foragers from the northwestern Kyushu area from the Yayoi period (5th century BC to 3rd century AD); the Okhotsk (5th to 12th centuries AD) foragers from Hokkaido and Sakhalin; the common people from medieval Kamakura (12th to 14th centuries AD) in Kanto, central Japan; and the early-modern farmers (17th to 19th centuries AD) from Kumejima, in the southernmost island chain (Ryukyu Islands). Crude prevalence comparisons showed that the shoulder and hip joints were principally affected in early-modern Kumejima and medieval Kamakura, which contrasted with the high prevalence of elbow and knee joint changes in the Okhotsk people. The heavy dependence on marine mammals and fish for dietary protein intake probably required flexion and extension movements of the most severely degenerated joints in the Okhotsk people. The northern Kyushu/Yamaguchi and northwestern Kyushu Yayoi peoples were more affected by degeneration in the wrist joints than others, possibly due to their use of innovative tools such as stone or shell knives and harpoons. A multivariate logistic regression analysis, adjusted for age, region, and sex as the predictor variables for degenerative changes in joints, was applied to only the two samples from Kumejima and Kamakura (including previously reported spine data) because of their better preservation. This revealed differences in the prevalence of changes in some joints; for example, age-related changes were recognized. The Kumejima people were more commonly affected by hip and knee joint changes, whereas the Kamakura people were more commonly affected by changes to apophyseal joints. Because a stable isotope analysis indicated that the trophic levels of the two populations were almost the same, the pattern of degenerative changes would have reflected differences in their specific workloads, such as wet rice cultivation using a peculiar hoe by the Kumejima people. This study, combining multivariate logistic regression analysis of degenerative joint changes and stable isotope analyses, uses large skeletal populations to add clarity to the actual rigors of ancient life. © 2015 Elsevier Ltd and INQUA

    Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells

    Get PDF
    呼吸器の発生をつかさどるメカニズムの解明 --発生現象の発見に基づくES細胞から気管組織の作出へ--. 京都大学プレスリリース. 2020-09-03.The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of β-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair

    Commensal bacteria regulate thymic Aire expression.

    No full text
    Commensal bacteria in gastrointestinal tracts are reported to function as an environmental factor to regulate intestinal inflammation and immune responses. However, it remains largely unknown whether such bacterial function exerts any effect on other immune organs distant from the intestine. In this study, the influence of commensal bacteria in the thymus, where T cell lineages develop into mature type to form proper repertoires, was investigated using germ-free (GF) mice and Nod1-deficient mice lacking an intracellular recognition receptor for certain bacterial components, in which a commensal bacterial effect is predicted to be less. In both mice, there was no significant difference in the numbers and subset ratios of thymocytes. Interestingly, however, autoimmune regulator (Aire) expression in thymic epithelial cells (TECs), main components of the thymic microenvironment, was decreased in comparison to specific pathogen-free (SPF) mice and Nod1 wild-type (WT) mice, respectively. In vitro analysis using a fetal thymus organ culture (FTOC) system showed that Aire expression in TECs was increased in the presence of a bacterial component or a bacterial product. These results suggest that through their products, commensal bacteria have the potential to have some effect on epithelial cells of the thymus in tissues distant from the intestine where they are originally harbored
    corecore