39 research outputs found

    Phase Ib/II study of nivolumab combined with palliative radiation therapy for bone metastasis in patients with HER2-negative metastatic breast cancer

    Get PDF
    Radiation therapy (RT) can enhance the abscopal effect of immune checkpoint blockade. This phase I/II study investigated the efficacy and safety of nivolumab plus RT in HER2-negative metastatic breast cancer requiring palliative RT for bone metastases. Cohort A included luminal-like disease, and cohort B included both luminal-like and triple-negative disease refractory to standard systemic therapy. Patients received 8 Gy single fraction RT for bone metastasis on day 0. Nivolumab was administered on day 1 for each 14-day cycle. In cohort A, endocrine therapy was administered. The primary endpoint was the objective response rate (ORR) of the unirradiated lesions. Cohorts A and B consisted of 18 and 10 patients, respectively. The ORR was 11% (90% CI 4–29%) in cohort A and 0% in cohort B. Disease control rates were 39% (90% CI 23–58%) and 0%. Median progression-free survival was 4.1 months (95% CI 2.1–6.1 months) and 2.0 months (95% CI 1.2–3.7 months). One patient in cohort B experienced a grade 3 adverse event. Palliative RT combined with nivolumab was safe and showed modest anti-tumor activity in cohort A. Further investigations to enhance the anti-tumor effect of endocrine therapy combined with RT plus immune checkpoint blockade are warranted

    Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission

    Get PDF
    [EN]Fungal cytokinesis requires the assembly of a dividing septum wall. In yeast, the septum has to be selectively digested during the critical cell separation process. Fission yeast cell wall alpha (1-3) glucan is essential, but nothing is known about its localization and function inthe cell wall or about cooperation between the alpha - and beta (1-3) glucan synthases Ags1 and Bgs for cell wall and septum assembly. Here, we generate a physiological Ags1-GFP variant and demonstrate a tight colocalization with Bgs1, suggesting a cooperation in the important early steps of septum construction. Moreover, we define the essential functions of alpha(1-3) glucan in septation and cell separation. We show that alpha (1-3) glucan is essential for both secondary septum formation and the primary septum structural strength needed to support the physical forces of the cell turgor pressure during cell separation. Consequently, the absence of Ags1 and therefore alpha(1-3)glucan generates a special and unique side-explosive cell separation due to an instantaneous primary septum tearing caused by the turgor pressure

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore