36 research outputs found

    Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    Get PDF
    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution

    Drug retention and discontinuation reasons between seven biologics in patients with rheumatoid arthritis -The ANSWER cohort study-

    Get PDF
    The purpose of this study was to evaluate the retention and discontinuation reasons of seven biological disease-modifying antirheumatic drugs (bDMARDs) in a real-world setting of patients with rheumatoid arthritis (RA). 1,037 treatment courses with bDMARDs from 2009 to 2016 [female, 81.8%; baseline age, 59.6 y; disease duration 7.8 y; rheumatoid factor positivity 81.5%; Disease Activity Score in 28 joints using erythrocyte sedimentation rate (DAS28-ESR), 4.4; concomitant prednisolone 43.5% and methotrexate 68.6%; Bio-naïve, 57.1%; abatacept (ABT), 21.3%; tocilizumab (TCZ), 20.7%; golimumab (GLM), 16.9%; etanercept (ETN), 13.6%; adalimumab (ADA), 11.1%; infliximab (IFX), 8.5%; certolizumab pegol (CZP), 7.9%] were included in this multi-center, retrospective study. Drug retention and discontinuation reasons at 36 months were estimated using the Kaplan-Meier method and adjusted by potent confounders using Cox proportional hazards modeling. As a result, 455 treatment courses (43.9%) were stopped, with 217 (20.9%) stopping due to inefficacy, 113 (10.9%) due to non-toxic reasons, 86 (8.3%) due to toxic adverse events, and 39 (3.8%) due to remission. Drug retention rates in the adjusted model were as follows: total retention (ABT, 60.7%; ADA, 32.7%; CZP, 43.3%; ETN, 51.9%; GLM, 45.4%; IFX, 31.1%; and TCZ, 59.2%; P < 0.001); inefficacy (ABT, 81.4%; ADA, 65.7%; CZP, 60.7%; ETN, 71.3%; GLM, 68.5%; IFX, 65.0%; and TCZ, 81.4%; P = 0.015), toxic adverse events (ABT, 89.8%; ADA, 80.5%; CZP, 83.9%; ETN, 89.2%; GLM, 85.5%; IFX, 75.6%; and TCZ, 77.2%; P = 0.50), and remission (ABT, 95.5%; ADA, 88.1%; CZP, 91.1%; ETN, 97.5%; GLM, 94.7%; IFX, 86.4%; and TCZ, 98.4%; P < 0.001). In the treatment of RA, ABT and TCZ showed higher overall retention, and TCZ showed lower inefficacy compared to IFX, while IFX showed higher discontinuation due to remission compared to ABT, ETN, GLM, and TCZ in adjusted modeling.Ebina K., Hashimoto M., Yamamoto W., et al. (2018) Drug retention and discontinuation reasons between seven biologics in patients with rheumatoid arthritis -The ANSWER cohort study-. PLoS ONE 13(3): e0194130. doi: 10.1371/journal.pone.0194130

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor 104\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

    Collective Excitations in Liquid Lead

    No full text
    corecore