15 research outputs found

    Unc93B1 Restricts Systemic Lethal Inflammation by Orchestrating Toll-like Receptor 7 and 9 Trafficking

    Get PDF
    SummaryToll-like receptor-7 (TLR7) and 9, innate immune sensors for microbial RNA or DNA, have been implicated in autoimmunity. Upon activation, TLR7 and 9 are transported from the endoplasmic reticulum (ER) to endolysosomes for nucleic acid sensing by an ER-resident protein, Unc93B1. Little is known, however, about a role for sensor transportation in controlling autoimmunity. TLR9 competes with TLR7 for Unc93B1-dependent trafficking and predominates over TLR7. TLR9 skewing is actively maintained by Unc93B1 and reversed to TLR7 if Unc93B1 loses preferential binding via a D34A mutation. We here demonstrate that mice harboring a D34A mutation showed TLR7-dependent, systemic lethal inflammation. CD4+ T cells showed marked differentiation toward T helper 1 (Th1) or Th17 cell subsets. B cell depletion abolished T cell differentiation and systemic inflammation. Thus, Unc93B1 controls homeostatic TLR7 activation by balancing TLR9 to TLR7 trafficking

    Cleavage of Toll-Like Receptor 9 Ectodomain Is Required for In Vivo Responses to Single Strand DNA

    Get PDF
    Mouse toll-like receptor 9 (TLR9) is an endosomal sensor for single-stranded DNA. TLR9 is transported from the endoplasmic reticulum to endolysosomes by a multiple transmembrane protein Unc93 homolog B1, and proteolytically cleaved at its ectodomain. The structure of TLR9 and its biochemical analyses have shown that the proteolytic cleavage of TLR9 ectodomain enables TLR9-dimerization and TLR9 activation. However, the requirement of TLR9 cleavage in vivo has not been studied. We here show that the 13 amino acids deletion at the cleavage site made TLR9 resistant to proteolytic cleavage. The deletion mutation in the Tlr9 gene impaired TLR9-dependent cytokine production in conventional dendritic cells from the mutant mice. Not only in vitro, in vivo production of inflammatory cytokines (TNF-α and IL-12p40), chemokine (CCR5/RANTES), and type I interferon (IFN-α) induced by administration of TLR9 ligand was also impaired. These results demonstrate that the TLR9 cleavage is required for TLR9 responses in vivo
    corecore