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SUMMARY

Toll-like receptor-7 (TLR7) and 9, innate immune
sensors for microbial RNA or DNA, have been impli-
cated in autoimmunity. Upon activation, TLR7 and 9
are transported from the endoplasmic reticulum (ER)
to endolysosomes for nucleic acid sensing by an
ER-resident protein, Unc93B1. Little is known,
however, about a role for sensor transportation in
controlling autoimmunity. TLR9 competes with TLR7
forUnc93B1-dependent traffickingandpredominates
over TLR7. TLR9 skewing is actively maintained by
Unc93B1 and reversed to TLR7 if Unc93B1 loses pref-
erential binding via a D34Amutation.We here demon-
strate that mice harboring a D34A mutation showed
TLR7-dependent, systemic lethal inflammation. CD4+

T cells showedmarkeddifferentiation towardT helper
1 (Th1) or Th17cell subsets. B cell depletion abolished
Tcell differentiation andsystemic inflammation. Thus,
Unc93B1 controls homeostatic TLR7 activation by
balancing TLR9 to TLR7 trafficking.

INTRODUCTION

Toll-like receptors (TLRs) sense a variety of microbial products

such as microbial membrane lipids or nucleic acids and mount

innate and adaptive immune responses (Kaisho and Akira,

2006; Miyake, 2007). Cell-surface TLR dimers including TLR4-

MD-2, TLR1-TLR2, and TLR6-TLR2 recognize microbial

membrane lipids, whereas TLR3, 7, 8, and 9 reside in intracellular

organelles and recognizemicrobial nucleic acids. Recent studies

have revealed that TLRsmistakenly respond to self products and

cause autoimmune diseases. TLR7 and 9, innate immune

sensors for microbial RNA or DNA (Blasius and Beutler, 2010),

have been implicated in autoimmune diseases such as psoriasis

(Lande et al., 2007), arthritis (Asagiri et al., 2008), and systemic

lupus erythematosus (SLE) (Christensen et al., 2006; Ehlers
et al., 2006; Marshak-Rothstein and Rifkin, 2007). Overexpres-

sion of TLR7 in the Y-linked autoimmune accelerating (Yaa)

mice or TLR7 transgenic mice predisposes these organisms to

lupus nephritis (Deane et al., 2007; Subramanian et al., 2006),

whereas the lack of the TLR7 gene ameliorates disease progres-

sion in lupus-prone mice (Christensen et al., 2006). TLR9 is more

complicated than TLR7 in its link with autoimmune disease.

Despite reports showing a pathogenic role for TLR9 in psoriasis,

lupus nephritis, adjuvant-induced arthritis, or a mouse model of

multiple sclerosis (Asagiri et al., 2008; Deng et al., 1999; Ehlers

et al., 2006; Ronaghy et al., 2002), opposing results were also

described that TLR9 deficiency in autoimmune-prone MRL/lpr

mice exacerbates clinical diseases, including more severe

glomerulonephritis, a significantly shortened lifespan, and in

some models, elevated titers of autoantibodies reactive with

RNA-associated autoantigens (Christensen et al., 2006; Yu

et al., 2006). TLR9was suggested to protect disease progression

by antagonizing TLR7 (Nickerson et al., 2010). An opposing rela-

tionship between TLR7 and 9 has emerged as a potential mech-

anism regulating autoimmunity.

Self-pathogen discrimination by TLR7 and 9 was initially

considered to depend on structural differences between self

and microbial nucleic acids, such as unmethylated CpG motifs

in bacterial DNA and clusters of U- or GU-rich sequences in viral

RNA (Diebold et al., 2004; Heil et al., 2004; Krieg, 2002).

However, these structures recognized by TLR7 and 9 are still

found in self nucleic acids, although much less than in microbial

nucleic acids. Therefore, TLR7 and 9 still have the risk of

responding to self nucleic acids. Self-pathogen discrimination

needs to be strengthened by sequestration of self nucleic acids

from endolysosomes, the site for nucleic acid sensing by TLR7

and 9. Whereas extracellular self nucleic acids are rapidly

degraded by DNase or RNase, microbial nucleic acids are pro-

tected by bacterial cell walls or viral particles and transported

to endolysosome (Barton et al., 2006). Aberrant trafficking of

self nucleic acids to endolysosomes was shown to exacerbate

autoimmunity (Lande et al., 2007; Leadbetter et al., 2002;

Marshak-Rothstein and Rifkin, 2007). In autoimmune diseases

like SLE, self-RNA and self-DNA are complexed with autoanti-

bodies against the nucleic acid or nucleoproteins, delivered
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into endosomal compartments via FcgRII-mediated endocy-

tosis, leading to dendritic cell (DC) activation and production of

type I interferon (IFN) (Barrat et al., 2005). In psoriasis, self-

DNA and -RNA form complexes with the cationic antimicrobial

peptide LL37, gain access to TLR7 and 9 in endolysosomes of

DCs, and induce aberrant production of IFN-a (Ganguly et al.,

2009; Lande et al., 2007).

TLR7 and 9 are also transported from the endoplasmic retic-

ulum (ER) to endolysosomes upon activation. TLR7 and 9 traf-

ficking is controlled by Unc93B1, a multitransmembrane ER-

resident protein. In mice, a missense mutation in the Unc93b1

gene (H412R mutation) abrogates signaling via TLR3, 7, and 9

without compromising other TLRs (Tabeta et al., 2006). These

mutant mice (‘‘3d’’ mice) show increased susceptibility to infec-

tion by a variety of pathogens. As in 3d mice, cells from

Unc93B1-deficient patients are defective in signaling via the

nucleic acid-sensing TLRs 3, 7, 8, and 9 (Casrouge et al.,

2006). Unc93B1 was shown to bind to TLR7 and 9 and transport

TLR7 and 9 from the ER to endolysosomes (Brinkmann et al.,

2007; Kim et al., 2008). The 3d mutation H412R of Unc93B1

abolishes these interactions. Unc93B1-dependent trafficking of

TLR7 and 9 might have a role in limiting excessive access of

TLR7 and 9 to their ligands in endolysosome.

We previously reported that TLR9 competes with TLR7 for

Unc93B1-dependent transportation and predominates over

TLR7 (Fukui et al., 2009). TLR9 predominance is reversed to

TLR7 by D34A mutation in Unc93B1, rendering TLR7 hyperre-

sponsive and TLR9 hyporesponsive in dendritic cells (Fukui

et al., 2009). Mice harboring a D34A mutation in Unc93B1 have

now been established and we here show a critical role for

Unc93B1 in restricting homeostatic TLR7 activation.

RESULTS

A D34A Mutation in Unc93B1 Skews the TLR7 and TLR9
Balance to TLR7
To address a role for Unc93B1-dependent TLR7 and 9 balance

in vivo, we generated the mice harboring a single base mutation

replacing D34 with A in Unc93B1 by gene targeting (see Figures

S1A and S1B available online). Homozygous mice were born at

the expected Mendelian ratio without any obvious develop-

mental defect (Figure S1C). The mutation was confirmed by

sequencing genomic DNA from Unc93b1D34A/D34A homozygous

mice (Figure S1D).

We previously reported that overexpression of a D34A

Unc93B1 mutant rendered TLR7 hyperresponsive and TLR9

hyporesponsive in bone marrow-derived conventional dendritic

cells (BM-cDCs) (Fukui et al., 2009). To confirm and extend this

finding by using Unc93b1D34A/D34A mice, we obtained BM-Mac

(macrophage), BM-cDCs, BM-pDCs (plasmacytoid DC), and B

cells from Unc93b1D34A/D34A mice, and we stimulated them with

TLR7 ligands (loxoribine or imiquimod), TLR9 ligands (CpG-A or

CpG-B), a TLR3 ligand (poly(I:C)), or a TLR4-MD-2 ligand (lipid A).

Production of tumor necrosis factor-a (TNF-a), interleukin-12

(IL-12) p40, or IFN-a was detected by ELISA (Figures 1A–1C).

B cells were cultured with TLR ligands and proliferation was

estimated by 3H-labeled thymidine uptake assay (Figure 1D). As

expected, the TLR7 response was upregulated whereas the

TLR9 response was downregulated in all the immune cells
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studied from Unc93b1D34A/D34A mice (Figures 1A–1D). TLR3

and TLR4-MD-2 responses were not affected by the D34A

mutation (Figures 1A, 1B, and 1D). Despite these TLR7-skewed

responses in these immune cells, the D34Amutation did not alter

mRNA expression encoding TLR7 or TLR9 (Figure 1E; Figures

S2A and S2B). These results demonstrate that Unc93B1 actively

maintains the TLR9-skewed state in these immune cells.

Systemic Lethal Inflammation in Unc93b1D34A/D34A Mice
Half of the Unc93b1D34A/D34A mice prematurely died within

30 weeks of age (Figure 2A). Huge splenomegaly and liver

damage were macroscopically apparent in moribund mice.

Pale spots on the entire surface of the liver weremacroscopically

seen, suggesting multilobular liver damages. Microscopic anal-

yses with H&E staining of moribund mice revealed multilobular

hepatic necrosis (Figure 2B, green arrowheads) probably caused

by ischemia and infiltration of inflammatory cells into the hepatic

sinusoids and slightly into the portal area (black arrowheads).

These pathological findings suggested acute huge liver damage,

which probably induced liver failure. Flow cytometry analyses

revealed that CD11b+ CD11chiGr1int cells infiltrated the liver (Fig-

ure 2C). Although the reticulin fiber was partly aggregated in

silver impregnation stain (Figure 2B, open arrowheads), progres-

sive portal fibrosis, indicating chronic liver damage, was not

clearly observed. Elevated amounts of serum bilirubin, AST

(aspartate aminotransferase), and ALT (alanine aminotrans-

ferase) corroborated hepatic necrosis in moribund mice (Fig-

ure 2D; Figure S3A). In nonmoribund mice, liver specimens indi-

cated only mild to moderate infiltration of inflammatory cells into

sinusoids and spotty hepatic necrosis mainly in the central area

of the liver lobule (Figure 2B, blue arrowheads), suggesting that

the liver damage was not severe. Consistent with this, serum

AST and ALT were not elevated in nonmoribund mice (Fig-

ure S3A). Necrotic lesions were not found in other organs in-

cluding kidney, lung, heart, and spleen (Figures 2E and 3B; Fig-

ure S3C). In the kidney, glomerulonephritis was microscopically

apparent (Figure 2E), but the function of kidneys seemed to be

spared, because serum creatinine showed only a weak increase

(Figure 2F; Figure S3A). Premature death in Unc93b1D34A/D34A

mice is, therefore, likely to be caused by liver necrosis rather

than glomerulonephritis (see Discussion).

Splenomegalywasprogressiveandcorrelatedwellwithmouse

mortality (Figure 3A). Histological analysesdemonstrated that the

tissue structure of the spleen was disrupted by massive expan-

sion of nonlymphoid cells (Figure 3B). Flow cytometry analyses

revealed that Ter119+CD71+ erythroblasts and CD11b+ myeloid

cells increased in the spleen at the cost of T cells (Figure 3C).

CD11b+myeloid cells in the spleen were likely tomigrate through

the portal vein into the liver and caused hepatocyte necrosis.

Expansion of erythroid and myeloid cells did not change the

percentage of B cells (Figure 3C), suggesting that B cells also

increased in number. Despite erythroblastosis in the spleen,

anemia was seen only in moribund mice (Figure S3B). Instead,

a blood cell count revealed severe thrombocytopenia not only

in moribund mice but also in nonmoribund mice (Figure 3D).

We also examined autoantibody production by histolo-

gical staining. We were able to detect antinuclear (ANA),

mitochondorial (AMA), and smooth muscle antibodies (ASMA)

(Figure S3D) in Unc93b1D34A/D34A mice.
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Figure 1. A D34A Mutation in Unc93B1 Renders TLR7 Hyperresponsive and TLR9 Hyporesponsive

(A–C) Cytokine production of bone marrow-derived macrophages (A), cDCs (B), or pDCs (C). TNF-a (A), IL-12p40 (B), or IFN-a (C) in culture supernatant were

detected by ELISA.

(D) Proliferation assay of splenic B cells. B cell proliferation was detected by 3H-labeled thymidine uptake after 3 days of stimulation.

(E) mRNA expression in bone marrow-derived macrophages. Results were normalized by HPRT mRNA expression.

Blue bars or red bars indicate cells from Unc93b1WT/WT mice or Unc93b1D34A/D34A mice, respectively. Cells were stimulated with TLR7 (loxoribine, mM;

Imiquimod, ng/ml), TLR9 (CpGA or CpG-B, nM), TLR3 (poly(I:C), mg/ml), or TLR4 (LipidA, ng/ml) ligands (A)–(D). Mean ± SD from triplicate wells. Representative

results are shown from at least three independent analyses with mice at 5–10 weeks old. See also Figure S2.

Immunity

Unc93B1 Restricts Autoimmunity
TLR7, but Not TLR9, Is Responsible for the Pathologies
in Unc93b1D34A/D34A Mice
To clarify roles for TLR7 or 9 in the pathologies of

Unc93b1D34A/D34A mice, we crossed Unc93b1D34A/D34A mice

with Myd88�/�, Tlr7�/�, or Tlr9�/� mice. Unc93b1D34A/D34A

Tlr7�/� mice did not show premature death, whereas the lack
of TLR9 did not alter survival of Unc93b1D34A/D34A mice (Fig-

ure 4A). Furthermore, aberrant expansion of erythroblast and

myeloid cells was not seen in the spleen of Unc93b1D34A/D34A

Tlr7�/� mice (Figure 4B). Platelet counts in peripheral blood

returned to normal in the absence of MyD88 or TLR7, but not

of TLR9 (Figure 4C).
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Figure 2. The D34A Unc93B1 Mutation Causes Systemic Inflammation

(A) Survival curves for wild-type mice (blue, n = 48) and Unc93b1D34A/D34A mice (red, n = 60).

(B)Histological (hematoxylineandeosine,H&E,orsilver impregnation)analysesof the liver.The leftbottomphotoshows thearea indicatedbyasquare in the leftmiddle

photo.Leftmiddleand rightmiddlephotoswereseriallyprepared.Greenarrowheads, theboundaryofmultilobularnecroticareas;blackarrowheads, inflammatorycell

infiltration; open arrowheads, aggregation of reticulin fiber in the necrotic area; blue arrowheads, spotty hepatic necrosis. Scale bars represent 100 mm.

(C) Flow cytometry analyses of liver cells.

(D) Serum AST scores. The data points indicated by a square are values for moribund mice.

(E) Histological analyses of kidneys. The arrowheads indicate the boundary of a glomerulus. Scale bars represent 100 mm.

(F) Creatinine in peripheral blood from wild-type or Unc93b1D34A/D34A mice.

Blue dots or red dots in (D) and (F) indicate WT (n = 6) or Unc93b1D34A/D34A (n = 9) mice, respectively. Statistics analysis was calculated by Student’s t test.

**p < 0.001. Data are representative of at least six independent analyses of mice at 17–37 weeks old. See also Figure S3.

Immunity

Unc93B1 Restricts Autoimmunity
We next studied subcellular distribution of TLR7 or TLR9 in

DCs. GFP-tagged TLR7 or TLR9 was expressed in stem cell-

transduced DCs, and the distribution of TLR7 or TLR9was deter-

mined by confocal microscopy (Figure 4D; Figure S7). TLR7-GFP
72 Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc.
in Unc93b1D34A/D34A DCs showed higher colocalization with an

endolysosome marker LAMP1 than that in wild-type DCs. The

percentage of the cells showing TLR7-LAMP1 colocalization in

Unc93b1D34A/D34A DCs was about 2-fold higher than that in



Figure 3. Pathologic Changes in Unc93b1D34A/D34A Mice

(A) Plot of spleen weight against ages of the mice. The values from moribund mice are indicated by an ellipse.

(B) Microscopic analyses of the spleen. Histological samples were stained by H&E. Scale bars represent 100 mm.

(C) Flow cytometry analyses of splenic cells.

(D) Platelet counts in peripheral blood fromwild-type (n = 9) orUnc93b1D34A/D34Amice (n = 12). Black bars in the graph indicate the averages (WT = 88.1, KI = 19.8).

Blue dots or red dots in (A) and (D) indicateWT orUnc93b1D34A/D34Amice, respectively. Statistics analysis was calculated by Student’s t test. **p < 0.001. Data are

representative of at least six independent analyses of mice at 18–37 weeks old. See also Figure S3.

Immunity

Unc93B1 Restricts Autoimmunity
wild-type DCs (Figure 4E). In contrast, no difference was seen

between Unc93b1D34A/D34A and wild-type DCs in colocalization

of TLR9-GFP and LAMP-1 (Figure S7). These results suggest

that aberrant activation of TLR7 in Unc93b1D34A/D34A mice

results from enhanced TLR7 trafficking to endolysosomes.

T Cells Show Marked Differentiation into Th1 or Th17
Cell Subsets in Unc93b1D34A/D34A Mice
To gain insight into the pathology of Unc93b1D34A/D34A mice, we

studied the activation status of T cells. CD4+ T cells showed

marked differentiation toward a CD62LloCD44hi memory pheno-
type (Figure 5A). Cell surface ICOS (inducible T cell costimulator)

andCD69werebothupregulated in lymphnodeCD4+Tcells (Fig-

ure 5B). The lack of TLR7 completely abolished these changes

(Figures 5A and 5B), suggesting that chronic T cell activation is

linked to TLR7-dependent pathology in Unc93b1D34A/D34A

mice. To corroborate a pathogenic role for lymphocytes in the

pathology of Unc93b1D34A/D34A mice, Unc93b1D34A/D34A mice

were crossed with Rag2�/� mice. The double mutant mice did

not suffer from premature death, splenomegaly, or thrombocyto-

penia (Figures 5C and 5D), demonstrating a key role for lympho-

cytes in systemic inflammation caused by the D34A mutation.
Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc. 73
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Figure 4. TLR7 Causes Systemic Inflammation in Unc93b1D34A/D34A Mice

(A) Survival curves of Unc93b1D34A/D34A mice (red, n = 21) or those lacking TLR7 (blue, n = 15) or TLR9 (green, n = 12).

(B) Flow cytometry analyses of splenic cells from Unc93b1D34A/D34ATlr7�/� mice.

(C) Platelet counts in peripheral blood from mice of the indicated genotypes.

(D) Intracellular distribution of TLR7 in stem cell-derived DCs. LAMP1 was used as a marker of endolysosomes. Scale bars represent 10 mm.

(E) Percentage of the cells in which TLR7 are merged with endolysosomes. More than 30 cells were observed and calculated.

Statistics analyses were calculated by Student’s t test between indicated genotype. **p < 0.001, N.S., not significant. Data are representative of at least five

independent analyses of mice at 17–40 weeks old. See also Figure S7.

Immunity

Unc93B1 Restricts Autoimmunity
ICOS upregulation on CD4+ T cells in Unc93b1D34A/D34A mice

correlated with spleen weight (Figure S4). ICOS was reported to

be important for the development of follicular helper T (Tfh) cells
74 Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc.
or IL-17A-producing helper T (Th17) cells (Bauquet et al., 2009).

To study the in vivo activation status of helper T cell subsets

in Unc93b1D34A/D34A mice, cytokine expression in CD4+



Figure 5. Lymphocytes Are Responsible for Systemic Inflammation in Unc93b1D34A/D34A Mice
(A) Flow cytometry analyses of CD4+ T cells from WT, Unc93b1D34A/D34A, or Unc93b1D34A/D34ATlr7�/� mice for memory T cells (CD44hiCD62Llo).

(B) Mean fluorescence intensities (MFI) of ICOS or CD69 on CD4+ T cells from wild-type (blue), Unc93b1D34A/D34A (red), or Unc93b1D34A/D34ATlr7�/� (green) mice.

Black bars represent average values.

(C) Survival curves of Unc93b1D34A/D34A (red, n = 28) or Unc93b1D34A/D34ARag2�/� (blue, n = 13) mice.

(D) Platelet counts in peripheral blood fromWT (red), Unc93b1D34A/D34ARag2�/� (green), or Rag2�/� (blue) mice. Black bars represent average values (24.8, 89.5,

96.0, respectively).

Statistics analyses were calculated by Student’s t test between indicated genotype. **p < 0.001. N.S., not significant. Data are representative of at least five

independent analyses of mice at 18–37 weeks old. See also Figure S4.

Immunity

Unc93B1 Restricts Autoimmunity
T cells was analyzed and compared between wild-type and

Unc93b1D34A/D34A mice. mRNA encoding IL-17A or IFN-g was

upregulated, suggesting enhanced T cell differentiation into

Th17 and Th1 cells (Figure 6A). Th17 cell differentiation was

further supported by upregulation of the mRNA for another

Th17 cell-specific cytokine IL-22 (Figure 6A). To confirm

enhanced T cell differentiation into Th1 and Th17 cells, percent-

ages of Th1 and Th17 cells were determined by intracellular

staining of IL-17A and IFN-g. As expected, Th1 and Th17 cells

increased in percentage in lymph nodes from Unc93b1D34A/D34A

mice in a manner dependent on TLR7 (Figure 6B). IL-21 is

produced in Tfh and Th17 cells and has a pathogenic role in

BXSB-Yaa mice (Bubier et al., 2009), an autoimmune-prone

mouse resulting from TLR7 gene duplication (Pisitkun et al.,

2006; Subramanian et al., 2006). mRNA encoding IL-21 as

well as the chemokine Ccl5 (RANTES), was upregulated in
Unc93b1D34A/D34A mice. IFN-g produced in CD8+ T cells is

reported to activate macrophages and cause hemophagocytic

syndrome (Jordan et al., 2004). CD8+ T cells inUnc93b1D34A/D34A

mice also showed aberrant production of IFN-g and Ccl5

(RANTES) (Figure S5A). Meanwhile, hemophagocytosis in the

bone marrow and peripheral blood was also found (Figure S5B).

Pathogenic Roles for B Cells in Unc93b1D34A/D34A Mice
We finally examined a role for B cells in the pathology of

Unc93b1D34A/D34A mice, by crossing these mice with B cell-defi-

cient Ighm�/� mice (Kitamura et al., 1991). The double mutant

mice did not show premature death or splenomegaly (Figure 7A).

Interestingly, blood platelet count in Unc93b1D34A/D34AIghm�/�

mice was significantly higher than that in Unc93b1D34A/D34A

mice but was still lower than in wild-type mice (Figure 7B). In

contrast, thrombocytopenia was not seen in Unc93b1D34A/D34A
Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc. 75
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Figure 6. T Cells Show Marked Differentiation into Th1 or Th17 Cell Subsets in Unc93b1D34A/D34A Mice

(A) Real-time RT-PCR for indicated gene expression. CD4+ T cells were obtained from wild-type (blue), Unc93b1D34A/D34A (red), or Unc93b1D34A/D34ATlr7�/�

(green) mice. The results were normalized by HPRT mRNA and represented as mean values from triplicate wells.

(B) Intracellular IL-17A and IFN-g in CD4+ T cells. Lymph node T cells were stained after 5 hr stimulation of PMA and ionomycin.

Data are representative of at least five independent analyses of mice at 24–31 weeks old. See also Figure S5.

Immunity

Unc93B1 Restricts Autoimmunity
Rag2�/� mice (Figure 5D), suggesting that a T cell-dependent, B

cell-independent mechanism caused mild thrombocytopenia.

T cell-dependent activation of macrophages, probably through

cytokines such as IFN-g, likely enhanced aberrant platelet inges-

tion. B cells probably exacerbated thrombocytopenia by

producing antiplatelet autoantibody or by enhancing T cell-

dependent macrophage activation. B cells were required for

robust T cell activation and differentiation in Unc93b1D34A/D34A

mice.Differentiation towardCD62LloCD44himemoryphenotypes

and ICOS upregulation were not seen in CD4+ T cells from

Unc93b1D34A/D34AIghm�/� mice (Figures 7C and 7D).

Given the pathogenic roles for B cells, we examined the activa-

tion status of B cells inUnc93b1D34A/D34A mice. Serum IgG2a and

IgG2b in unperturbed Unc93b1D34A/D34A mice were higher than
76 Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc.
those inwild-typemice (Figure 7E). In lymph nodes, B cells appar-

ently increased in percentage (Figure 7F; Figure S6A). In the

spleen, CD21hiCD23� marginal zone B cells were reduced in

percentage (FigureS6B).Alteration inBcellmaturationandexpan-

sion was not found in Unc93b1D34A/D34ATlr7�/� mice (Figure 7F;

FigureS6B).Unc93b1D34A/D34AB cells showedhigher proliferation

than wild-type B cells in response to anti-IgM as well as to TLR7

ligand (Figures1Dand7G). Thesedatasuggest thatTLR7 inBcells

are constitutively activated in Unc93b1D34A/D34A mice.

DISCUSSION

Pathogenic roles for TLR7 in autoimmunity have been well docu-

mented. The Y-linked autoimmune accelerating (Yaa) locus is



Figure 7. Pathogenic Roles for B Cells in Unc93b1D34A/D34A Mice

(A) Survival curves of Unc93b1D34A/D34A (red, n = 39) or Unc93b1D34A/D34AIghm�/� (blue, n = 16) mice.

(B) Platelet counts in peripheral blood from indicated mice.

(C) Flow cytometry analyses for memory phenotypes (CD44hiCD62Llo) of CD4+ T cells from Ighm�/�, Unc93b1D34A/D34A, and Unc93b1D34A/D34AIghm�/� mice.

(D) ICOS expression on CD4 T cells from Ighm�/� (blue), Unc93b1D34A/D34A (red), and Unc93b1D34A/D34AIghm�/� (green) mice. Black bars represent average

values of MFI (12.2, 57.2, 14.5, respectively).

(E) Serum titers of IgG subclass.

(F) Flow cytometry showing T and B cells in lymph nodes from WT, Unc93b1D34A/D34A, or Unc93b1D34A/D34ATlr7�/� mice. Percentages are shown.

(G) B cell proliferation in response to anti-IgM (mg/ml). Mean ± SD from triplicate wells.

Statistics analyses were calculated by Student’s t test between indicated genotype. **p < 0.001, *p < 0.01, N.S., not significant. Data are representative of at least

five independent analyses of mice at 17–37 weeks old. See also Figure S6.

Immunity

Unc93B1 Restricts Autoimmunity
a potent autoimmune disease allele because of TLR7 gene

duplication (Pisitkun et al., 2006; Subramanian et al., 2006).

Transgenic mice overexpressing TLR7 also causes autoim-

munity (Deane et al., 2007). Despite the similarities between

Unc93b1D34A/D34A and Yaa mice in the phenotypes like spleno-

megaly, glomerulonephritis, or monocytosis, apparent differ-
ences were also found. First, Th17 cell differentiation was

enhanced in Unc93b1D34A/D34A mice but not in Yaa mice

(Bubier et al., 2009). Second, liver necrosis was found in

Unc93b1D34A/D34A mice but has never been reported in Yaa

mice. Third, thrombocytopenia was not reported in Yaa mice,

but in Unc93b1D34A/D34A mice. A link between TLR7 and Th17
Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc. 77
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cells has been previously reported. Strong activation of TLR7 in

pDCs was suggested to promote T cell differentiation into Th17

or Th1 cells (Rajagopal et al., 2010; Yu et al., 2010). Topical appli-

cation of a TLR7 agonist induces Th17 cell-dependent psoriasis-

like skin inflammation and splenomegaly in mice (van der Fits

et al., 2009). Strong TLR7 activation in pDCs and/or B cells

may be required for T cell differentiation into Th17 or Th1 cell

subsets. Thrombocytopenia may also depend on strong TLR7

activation, as indicated by the fact that thrombocytopenia was

seen in TLR7 transgenic mice expressing as many as 8–16

copies of the TLR7 gene but not in those expressing 4–8 copies

(Deane et al., 2007). Although mRNA for TLR7 was not altered by

the D34A mutation, D34A mutation in Unc93B1 seems to be as

pathogenic as 8–16 extra copies of the TLR7 gene, far beyond

the TLR7 gene duplication. Robust TLR7 responses in

Unc93b1D34A/D34A mice would be important for inducing Th17

and Th1 cell differentiation as well as massive monocytosis.

On the other hand, weaker TLR7 activation in Yaa mice may

predispose to a SLE-like autoimmune disease. This study

provided in vivo evidence demonstrating that nucleic acid-

sensor trafficking is controlled as much as nucleic acid traf-

ficking to avoid innate immune response to self-nucleic acids.

TLR9 ameliorates disease progression in autoimmune-prone

MRL/lpr mice (Christensen et al., 2006), and the protective role

for TLR9 depends on its antagonistic effect on TLR7 (Nickerson

et al., 2010). The signaling pathway downstream of TLR9 is indis-

tinguishable from that of TLR7, so TLR9 is unlikely to deliver

a unique signal antagonizing TLR7-dependent autoimmunity.

Our studies strongly suggest that the antagonistic effect of

TLR9 is mediated by its competition with TLR7 for interaction

with Unc93B1 (Fukui et al., 2009). TLR8 has a similar role in regu-

lating autoimmunity through its antagonistic effect on TLR7, as

shown by the fact that Tlr8�/�mice predisposes to TLR7-depen-

dent autoimmune diseases (Demaria et al., 2010). TLR8 was

similar to TLR7 in competing with TLR9 for association with

Unc93B1 (Fukui et al., 2009). Given that mouse TLR8 does not

deliver an activation signal, TLR8 is likely to be trafficked

together with TLR7 from the ER to endolysosomes and compete

there with TLR7 for RNA sensing. Thus, TLR7 activity is tightly

controlled by a 2-fold antagonism in sensor transportation and

nucleic acid sensing by TLR9 and TLR8, respectively.

In the steady state, self nucleic acids are considered to be kept

sequestered from the endolysosome. The present study,

however, demonstrated that aberrant trafficking of TLR7 and 9

was sufficient for causing systemic inflammation. A small

amount of self-nucleic acids are likely to be transported to endo-

lysosomes even in the steady state and able to stimulate TLR7

and 9 in macrophages, DCs, and nucleic acid-specific B cells.

Activation of TLR7 and 9 in the steady state is supported by

a recent report suggesting that Unc93B1-dependent activation

of TLR7 and 9 has a role in removing autoreactive B cells (Isnardi

et al., 2008). Activation of TLR7 and 9 may even have a role in

regulating autoimmunity. Given that an additional copy of TLR7

gene is sufficient for predisposing to autoimmunity in Yaa

mice, the steady-state activation of TLR7 can easily go beyond

the safety limit. To manage a risk of TLR7 activation, its traf-

ficking is tightly controlled by Unc93B1.

Liver failure was probably induced by hepatic microcirculatory

disturbance in the course of inflammatory reactions and coagul-
78 Immunity 35, 69–81, July 22, 2011 ª2011 Elsevier Inc.
opathy leading to local hypoxia and secondary hepatic necrosis

(Kerr et al., 2003; Mochida et al., 1999). These inflammatory

responses responsible for blood microcoagulate-related micro-

circulatory disturbances in sinusoids often developed into

a systemic inflammatory response (SIRS) with a lot of cytokine

production by heavily infiltrated inflammatory cells, which

consists mainly of macrophages. SIRS is frequently related to

fulminant liver failure, which was induced by many factors such

as hepatitis virus, drugs, and autoimmune hepatitis. Histological

findings of moribund Unc93b1D34A/D34A mice such as acute

inflammation and multilobular necrosis and thrombocytopenia

are consistent with liver damage by hepatic microcirculatory

disturbance caused by cytokine storm. We could find neither

bile duct destruction, distinct portal fibrosis and infiltration

of lymphocytes and plasma cells, nor interface hepatitis in

Unc93b1D34A/D34A mice. These are histological hallmarks of

primary biliary cirrhosis or a usual type of autoimmune hepatitis,

respectively. Recently, cases of acute autoimmune hepatitis

have been reported (Abe et al., 2007). Interestingly, this type

of autoimmune hepatitis shows fatal fulminant hepatic failure

with multilobular hepatic necrosis as seen in moribund

Unc93b1D34A/D34A mice (Abe et al., 2007). ANA positivity in

Unc93b1D34A/D34A mice suggests that acute autoimmune hepa-

titis occurred and led to fulminant liver failure. However, we could

not exclude the possibility of hepatic sinusoidal blood stream

blockage by infiltrated cells in moribund Unc93b1D34A/D34A

mice. Liver failure was reported to occur via hepatic involvement

of hematologic malignancy, such as Hodgkin lymphoma, non-

Hodgkin lymphoma, acute myelogenous leukemia, and chronic

lymphocytic leukemia (Woolf et al., 1994). The type of infiltrating

cells in sinusoids in Unc93b1D34A/D34A mice should be investi-

gated further, for consideration of the possibility of hematopoi-

etic malignancy. Erythrocyte phagocytosis in the moribund

Unc93b1D34A/D34A mice suggested a clinical entity of hemopha-

gocytic syndrome frequently followed by liver failure because of

SIRS (Kuwata et al., 2006). Hemophagocytic syndrome is often

attributed to hematopoietic malignancy (Janka, 2007).

T cells in Unc93b1D34A/D34A mice showed marked differentia-

tion into memory phenotypes and upregulation in cell surface

ICOS and CD69. Production of T cell-derived cytokines such

as IL-17A, IL-21, IL-22, and IFN-g was upregulated. IFN-g is

reported to activate macrophages and cause hemophagocytic

syndrome (Jordan et al., 2004). Unc93b1D34A/D34A mice showed

hemophagocytosis in the bone marrow and peripheral blood.

T cell-derived cytokines such as IFN-g are likely to contrib-

ute to monocyte activation, expansion, and infiltration in

Unc93b1D34A/D34A mice.

T cell activation in Unc93b1D34A/D34A mice was dependent on

B cells, as indicated by the fact that the lack of B cells completely

abolished T cell activation revealed by a memory phenotype and

ICOS upregulation. TLR7-dependent B cell activation is likely to

lead to T cell activation and disease progression. MRL/lpr mice

are similar to Unc93b1D34A/D34A mice in that the lack of B cells

abolishes spontaneous T cell activation (Chan et al., 1999b).

Interestingly, antibody is not required for spontaneous T cell acti-

vation in MRL/lpr mice (Chan et al., 1999a), suggesting that the

antigen presenting cell (APC) function of B cells is critical in

promoting diseases. Pathogenic roles for B cells are further

underscored by B cell-targeted therapies that ameliorate
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disease severity in several human autoimmune disorders (Dörner

et al., 2009; Edwards and Cambridge, 2006).

Aberrant B cell activation inUnc93b1D34A/D34A mice is obvious

from the B cell increase in number in spleen and lymph nodes

and from an increase in serum IgG2a and IgG2b. B cells showed

enhanced proliferation upon ligation of BCR as well as of TLR7.

Considering that the basal titers of serum IgM and IgG in unper-

turbed Tlr7�/� mice were lower than those in wild-type mice

(Demaria et al., 2010), TLR7 in B cells is likely to be constitutively

activated in vivo. Given that TLR7 synergistically enhances BCR

signaling (Tsukamoto et al., 2009), constitutive activation of

TLR7 in Unc93b1D34A/D34A B cells would lead to strengthened

BCR signaling and resultant mature B cell expansion. Decrease

in marginal zone B cells in Unc93b1D34A/D34A mice is likely to be

due to upregulated BCR signaling. A similar phenotype was

reported in other mutant mice with strengthened BCR signaling

(Pillai and Cariappa, 2009). T cell-B cell interaction activates

both T and B cells, generating a vicious circle in a variety of auto-

immune diseases (Edwards and Cambridge, 2006). Therefore

TLR7 may have a role in maintaining or amplifying the vicious

circle between T cells and B cells.

Our results, however, do not necessarily negate a role for DCs

or macrophages in disease progression in Unc93b1D34A/D34A

mice. In the case of MRL/lpr mice, disease progression is

ameliorated not only by the lack of B cells but also by the lack

of DCs (Teichmann et al., 2010). DCs are specifically required

for T and B cell expansion, but not for initial T cell activation. B

cells and DCs seem to have a distinct role in disease progression

in MRL/lpr mice. The D34A mutation in Unc93B1 rendered TLR7

hyperresponsive in cDCs, pDCs, and macrophages as well as in

B cells. DCs or macrophages may be as pathogenic as B cells in

Unc93b1D34A/D34A mice. IFN-a production by pDCs has been

implicated in SLE-type autoimmune diseases (Banchereau and

Pascual, 2006), and pDCs showed hyperresponsiveness to

TLR7 ligand in Unc93b1D34A/D34A mice. We, however, have not

yet obtained evidence for pDCs activation in vivo. Furthermore,

aberrant production of IP-10, a type I IFN-dependent cytokine,

was not observed in the sera (data not shown). Further study is

required to reveal roles for pDC, cDCs, and macrophages in

T cell activation and disease progression in Unc93b1D34A/D34A

mice.

In conclusion, Unc93B1 actively and continuously regulates

excessive TLR7 activation of immune cells by employing TLR9

to counteract TLR7. The present study raises an important ques-

tion as to what causes a shift of the TLR7 and 9 balance to TLR7

in the steady state or disease state. Future study on this issue

might reveal a novel pathologic basis for inflammatory diseases

in mice and humans.
EXPERIMENTAL PROCEDURES

Generation of Unc93b1D34A/D34A Mice

Targeting vector forUnc93b1D34A/D34Amicewas constructed frompBAC-RP23-

86M22with Red/ET Counter-Selection BACModification Kit (GENE BRIDGES).

Thevectorwasdesigned to replace the34thasparticacid (GAC) toalanine (GCC).

The neomycin-resistant gene was put between Loxp sequences to be deleted

after germline transmission. 30 mg of targeting vector was electroporated into

EB3 129/Ola strain embryonic stem cells (Niwa et al., 2000). Cells were selected

with G418 and genomic DNA was purified. DNA was digested with the HindIII

restriction enzyme and subjected to Southern blotting for detection of homo-
logous recombination. The confirmed clone was microinjected into blastocysts

derived from C57BL/6 mice. The obtained chimera male mice were mated

with C57BL/6 female mice. Germline transmission was confirmed by coat color

and heterozygousmalemice werematedwith female CAG-Cre transgenicmice

(Sakai and Miyazaki, 1997). After neomycin-resistant gene deletion, D34A

heterozygous mice were intercrossed to generate Unc93b1D34A/D34A mice. The

D34A mutation in homozygous mice was confirmed by genomic DNA

sequencing. All animal experiments were done with the approval of the Animal

ResearchCommitteeof the InstituteofMedicalScience,TheUniversityof Tokyo.

Reagents and Antibodies

Recombinantmurinemacrophage colony-stimulating factor (M-CSF), granulo-

cyte macrophage colony-stimulating factor (GM-CSF), and fms-like tyrosine

kinase-3 ligand (Flt3-L) were purchased from Peprotech. Loxoribine was

purchased from Alexis. Imiquimod and poly(I:C) were purchased from Invivo-

gen. Lipid A Re:595 was purchased from SIGMA-ALDRICH. CpG-A 1585

(G*G*GGTCAACGTTGAG*G*G*G*G*G, asterisks are phosphorothioated) was

synthesized by Hokkaido System Science. CpG-B 1668 (TCCATGACGTTCCT

GATGCT, all phosphorothioated) was synthesized by FASMAC.Goat anti-IgM,

F(ab0)2 fragments of affinity-purified antibodies was purchased from Jackson

Immuno Research. Anti-biotin and anti-B220 MACS beads were purchased

from Miltenyi Biotec. PMA and ionomycin were purchased from Calbiochem.

Protein transport inhibitor was purchased from BD Biosciences PharMingen.

Biotin-conjugated anti-CD11c, anti-Ter119, anti-ICOS, anti-CD69, and anti-

CD21, FITC-conjugated anti-Gr1, anti-B220, and anti-CD44, PE-conjugated

anti-CD11b, anti-CD71, anti-CD62L, and anti-CD23, and APC-conjugated

anti-CD4 and anti-CD8 were purchased from eBioscience. FITC-conjugated

anti-IFN-g, PE-conjugated anti-CD33, and APC-conjugated streptavidin were

purchased from BD Biosciences PharMingen. PE-conjugated anti-IL-17A

was purchased from BioLegend. ELISA kit for TNF-a, IL-12p40, and IP-10

were purchased from R&D systems. ELISA kit for IFN-a was purchased from

PBL interferon source. Antibodies and standard immunoglobulin for serum

immunoglobulin ELISA assay was purchased from Southern Biotech.

Histological Analysis

Organs were fixed by 3.7% formaldehyde in PBS and embedded in paraffin

wax for slice. Sliced organs were stained by hematoxylin and eosin (H&E) or

silver impregnation and observed by BX41 microscopy system (OLYMPUS).

Images were retouched with Adobe Photoshop software.

Haematological Analysis

Blood samples were obtained from mice tails with EDTA-treated vacuum

capillaries and hematological scores were measured by automatic haemocy-

tometer MEK-6450 Celltac a (Nihon Kohden).

Biochemical Test

Blood was obtained from mice inferior vena cava and separated serum was

subjected to biochemical test (performed by Oriental Yeast Corporation).

Flow Cytometry

Liver, spleen, and lymph node (axillary, inguinal, and brachial) were obtained

from mice and prepared to single-cell suspension. Cells were treated by NH4Cl

solution forRBCs lysis and stainedwith antibodies. For internal cytokine staining

of T cells, cells were culturedwith 50 ng/ml PMA, 1 mM ionomycin, and 4 ml/6ml

protein transport inhibitor at 37�C for 5 hr. Cells were collected and treated with

heat-inactivated mouse serum at 4�C for 10 min for surface blocking. Blocked

cells were stained with anti-CD4 and 7-AAD (SIGMA-ALDRICH) and fixed with

4% paraformaldehyde in PBS at 4�C overnight. Fixed cells were treated with

permeabilization buffer (0.5% Triton X-100, 50 mM NaCl, 5 mM EDTA, 0.02%

NaN3 [pH 7.5]) at 4�C for 10min and subjected to internal staining. Stained cells

were subjected to flowcytometry (FACSCalibur,BDBiosciences), andacquired

data were analyzed with FlowJo software (Tree Star).

Cell Culture

Culture medium for macrophages employed DMEM with 10% FCS, penicillin,

and streptomycin. Culture medium for cDCs, pDCs, B cells, or T cells em-

ployed RPMI 1640 medium with 10% FCS, penicillin, and streptomycin. Indi-

cated reagents were contained in the medium.
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Deriving Myeloid Cells

Cells in bone marrow were flushed from mouse tibiae and femurs. After lysis of

RBCs, cellswereculturedat 37�C for1week. Formacrophages, cDCs,or pDCs,

100 ng/ml M-CSF, 10 ng/ml GM-CSF, or 30 ng/ml Flt3-ligand were added,

respectively. Cell differentiation was checked by staining CD11b or CD11c for

macrophages or cDCs, respectively. For pDCs, Flt3-ligand-induced cells

were stained by anti-CD11c and anti-B220. Stained cells were subjected to

sorting with FACS Aria and CD11c+B220+ population was collected as pDCs.

ELISA

Production of cytokines, interferon, and serum immunoglobulin was detected

by ELISA assay as described previously (Fukui et al., 2009).

Purification of B Cells

Spleens were obtained from mice and prepared to single-cell suspension.

After RBC lysis, cells were stained with anti-B220 and anti-CD11c and

subjected to cell sorting with FACS Aria. B220+CD11c� cells were collected

as B cells and used for analysis.

Generation of Double-Mutant Mice

Tlr7�/�, Tlr9�/�, and Myd88�/� mice were obtained from S. Akira (Osaka

Univ.). Rag2�/� mice were obtained from F.W. Alt (Harvard Univ.). Ighm mice

were purchased from The Jackson Laboratory. To obtain double-mutant

mice,Unc93b1D34A/D34A mice (129 background) were crossed with genetically

ablated mice (C57BL/6 background). Heterozygous mice were intercrossed to

obtain double-mutant mice as well asUnc93b1D34A/D34Amice for control mice.

Unc93b1D34A/D34A mice of 129 3 B6 background were indistinguishable from

those of 129 background in the phenotypes studied.

Intracellular Distribution of TLRs

GFP-tagged TLR7 and TLR9 were cloned into a retroviral vector pMX-puro.

These genes were transfected into stem cell-derived DCs as described

previously (Fukui et al., 2009). DCs were fixed and permeabilized as described

in ‘‘Flow Cytometry’’ and stained by 5 mg/ml of Alexa-647 conjugated anti-

LAMP1 for 60 min at 4�C. Cells were observed by LSM 710 confocal micros-

copy (Carl Zeiss) and taken images were processed by ZEN software (Carl

Zeiss).

Purification of T Cells

Spleenswere obtained frommice and prepared as per B cells. Cells were incu-

bated with biotin-conjugated anti-Ter119. Anti-biotin MACS beads and anti-

B220 MACS beads were bound to cells for depletion of erythroblasts and B

cells. By using AutoMACS (Miltenyi Biotec), the Ter119�B220� double-nega-

tive fraction was collected and stained with anti-CD4 and anti-CD8. CD4

single-positive or CD8 single-positive cells were sorted by FACS Aria and

subjected to real-time polymerase chain reaction (PCR).

Real-Time PCR

Total RNA was purified from cells with RNeasy Kit (QIAGEN), and first-strand

cDNA was synthesized with ReverTra Ace qPCR RT Kit (TOYOBO). cDNA was

subjected to real-time PCR as described previously (Fukui et al., 2009).

Expression of hypoxanthine guanine phosphoribosyl transferase (HPRT)

mRNA in each sample was detected and used for normalization of target

gene mRNA expression.

B Cell Proliferation Assay

Purified B cells were cultured with ligands for 3 days. Cell proliferation was

detected by 3H-labeled thymidine uptake as described previously (Tsukamoto

et al., 2009), but additional culture was 5 hr.
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