154 research outputs found

    Electronic Structures of N-doped Graphene with Native Point Defects

    Full text link
    Nitrogen doping in graphene has important implications in graphene-based devices and catalysts. We have performed the density functional theory calculations to study the electronic structures of N-doped graphene with vacancies and Stone-Wales defect. Our results show that monovacancies in graphene act as hole dopants and that two substitutional N dopants are needed to compensate for the hole introduced by a monovacancy. On the other hand, divacancy does not produce any free carriers. Interestingly, a single N dopant at divacancy acts as an acceptor rather than a donor. The interference between native point defect and N dopant strongly modifies the role of N doping regarding the free carrier production in the bulk pi bands. For some of the defects and N dopant-defect complexes, localized defect pi states are partially occupied. Discussion on the possibility of spin polarization in such cases is given. We also present qualitative arguments on the electronic structures based on the local bond picture. We have analyzed the 1s-related x-ray photoemission and adsorption spectroscopy spectra of N dopants at vacancies and Stone-Wales defect in connection with the experimental ones. We also discuss characteristic scanning tunneling microscope (STM) images originating from the electronic and structural modifications by the N dopant-defect complexes. STM imaging for small negative bias voltage will provide important information about possible active sites for oxygen reduction reaction.Comment: 40 pages, 2 tables, 16 figures. The analysis of Clar sextets is added. This version is published on PHYSICAL REVIEW B 87, 165401(2013

    Interplay between Nitrogen Dopants and Native Point Defects in Graphene

    Full text link
    To understand the interaction between nitrogen dopants and native point defects in graphene, we have studied the energetic stability of N-doped graphene with vacancies and Stone-Wales (SW) defect by performing the density functional theory calculations. Our results show that N substitution energetically prefers to occur at the carbon atoms near the defects, especially for those sites with larger bond shortening, indicating that the defect-induced strain plays an important role in the stability of N dopants in defective graphene. In the presence of monovacancy, the most stable position for N dopant is the pyridinelike configuration, while for other point defects studied (SW defect and divacancies) N prefers a site in the pentagonal ring. The effect of native point defects on N dopants is quite strong: While the N doping is endothermic in defect-free graphene, it becomes exothermic for defective graphene. Our results imply that the native point defect and N dopant attract each other, i.e., cooperative effect, which means that substitutional N dopants would increase the probability of point defect generation and vice versa. Our findings are supported by recent experimental studies on the N doping of graphene. Furthermore we point out possibilities of aggregation of multiple N dopants near native point defects. Finally we make brief comments on the effect of Fe adsorption on the stability of N dopant aggregation.Comment: 10 pages, 5 figures. Figure 4(g) and Figure 5 are corrected. One additional table is added. This is the final version for publicatio

    Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms

    Get PDF
    We report the local atomic and electronic structure of a nitrogen-doped graphite surface by scanning tunnelling microscopy, scanning tunnelling spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The nitrogen-doped graphite was prepared by nitrogen ion bombardment followed by thermal annealing. Two types of nitrogen species were identified at the atomic level: pyridinic-N (N bonded to two C nearest neighbours) and graphitic-N (N bonded to three C nearest neighbours). Distinct electronic states of localized {\pi} states were found to appear in the occupied and unoccupied regions near the Fermi level at the carbon atoms around pyridinic-N and graphitic-N species, respectively. The origin of these states is discussed based on the experimental results and theoretical simulations.Comment: 6 Pages, with larger figure

    Electronic Structure of the Novel Filled Skutterudite PrPt<sub>4</sub>Ge<sub>12</sub> Superconductor

    Get PDF
    We have performed soft x-ray photoemission spectroscopy (SXPES) and resonant photoemission spectroscopy (RPES) of the filled skutterudite superconductor PrPt4Ge12 in order to study the electronic structure of valence band and the character of Pr 4f. SXPES of PrPt4Ge12 measured with 1200 eV photon energy, where spectral contribution of Pr 4f is negligible, was found nearly identical with that of LaPt4Ge12, indicating similarity of Pt–Ge derived electronic states of the two compounds. Good correspondence with band calculations allows us to ascribe the dominant Ge 4p character of the density of states at the Fermi level (EF). Pr 3d → 4f RPES shows that, although Pr 4f electrons in PrPt4Ge12 are not as strongly hybridized with conduction electrons near EF as in PrFe4P12, there are finite Pr 4f contribution to the states near EF in PrPt4Ge12. These PES results give the information of fundamental electronic structure for understanding the physical properties of the novel filled skutterudite superconductor PrPt4Ge12

    Epitaxially Stabilized EuMoO3: A New Itinerant Ferromagnet

    Full text link
    Synthesizing metastable phase often opens new functions in materials but is a challenging topic. Thin film techniques have advantages to form materials which do not exist in nature since nonequilibrium processes are frequently utilized. In this study, we successfully synthesize epitaxially stabilized new compound of perovskite Eu2+Mo4+O3 as a thin film form by a pulsed laser deposition. Analogous perovskite SrMoO3 is a highly conducting paramagnetic material, but Eu2+ and Mo4+ are not compatible in equilibrium and previous study found more stable pyrochlore Eu23+Mo24+O7 prefers to form. By using isostructural perovskite substrates, the gain of the interface energy between the film and the substrate stabilizes the matastable EuMoO3 phase. This compound exhibits high conductivity and large magnetic moment, originating from Mo 4d2 electrons and Eu 4f7 electrons, respectively. Our result indi-cates the epitaxial stabilization is effective not only to stabilize crystallographic structures but also to from a new compound which contains unstable combinations of ionic valences in bulk form.Comment: 7 pages, 9 figure

    Digging up bulk band dispersion buried under a passivation layer

    Full text link
    Atomically controlled crystal growth of thin films has established foundations of nanotechnology aimed at the development of advanced functional devices. Crystallization under non-equilibrium conditions allows engineering of new materials with their atomically-flat interfaces in the heterostructures exhibiting novel physical properties. From a fundamental point of view, knowledge of the electronic structures of thin films and their interfaces is indispensable to understand the origins of their functionality which further evolves into realistic device application. In view of extreme surface sensitivity of the conventional vacuum-ultraviolet (VUV) angle-resolved photoemission spectroscopy (ARPES), with a probing depth of several angstroms, experiments on thin films have to use sophisticated in-situ sample transfer systems to avoid surface contamination. In this Letter, we put forward a method to circumvent these difficulties using soft X-ray (SX) ARPES. A GaAs:Be thin film in our samples was protected by an amorphous As layer with an thickness of 1\sim 1 nm exceeding the probing depth of the VUV photoemission with photon energy hνh\nu around 100 eV. The increase of the probing depth with increasing hνh\nu towards the SX region has clearly exposed the bulk band dispersion without any surface treatment. Any contributions from potential interface states between the thin film and the amorphous capping layer has been below the detection limit. Our results demonstrate that SX-ARPES enables the observation of coherent three-dimensional band dispersion of buried heterostructure layers through an amorphous capping layer, breaking through the necessity of surface cleaning of thin film samples. Thereby, this opens new frontiers in diagnostics of authentic momentum-resolved electronic structure of protected thin-film heterostructures.Comment: 5 pages, 3 figure
    corecore