322 research outputs found

    Discovery of Gas Bulk Motion in the Galaxy Cluster Abell 2256 with Suzaku

    Full text link
    The results from Suzaku observations of the galaxy cluster Abell2256 are presented. This cluster is a prototypical and well-studied merging system, exhibiting substructures both in the X-ray surface brightness and in the radial velocity distribution of member galaxies. There are main and sub components separating by 3'.5 in the sky and by about 2000 km s1^{-1} in radial velocity peaks of member galaxies. In order to measure Doppler shifts of iron K-shell lines from the two gas components by the Suzaku XIS, the energy scale of the instrument was evaluated carefully and found to be calibrated well. A significant shift of the radial velocity of the sub component gas with respect to that of the main cluster was detected. All three XIS sensors show the shift independently and consistently among the three. The difference is found to be 1500 ±300\pm 300 (statistical) ±300\pm 300 (systematic) km s1^{-1}. The X-ray determined absolute redshifts of and hence the difference between the main and sub components are consistent with those of member galaxies in optical. The observation indicates robustly that the X-ray emitting gas is moving together with galaxies as a substructure within the cluster. These results along with other X-ray observations of gas bulk motions in merging clusters are discussed.Comment: Accepted for publication in PASJ in 2011-03-2

    非行-臨床心理学的考察(その1)

    Get PDF
    社会問題化している児童青少年の非行の問題の今回は第1報として,非行の原因のなかから,育児の責任を果たしていない親と教師の問題を,過去7年に及ぶ著者の臨床経験と臨床心理学的知見とから考察した.今日の家庭における躾教育ならびに学校教育の問題点は,過保護に育ててはいけない,子供にできるだけ干渉しないようにという理念が,子供の精神発達,とりわけ自律的適応の時代における,適応の内面化の問題を軽視したかたちで定着しているところにある.このことを,著者の臨床例の分析結果から得られた母親の態度とともに明らかにした

    Comparison between early and late carotid endarterectomy for symptomatic carotid stenosis in relation to oxidized low-density lipoprotein and plaque vulnerability

    Get PDF
    ObjectiveAlthough carotid endarterectomy (CEA), the gold standard in stroke prevention, has been performed in the late stage after the insult, its optimal timing remains unclear. Using biomarkers in plaque and plasma, we evaluated oxidative stress and plaque vulnerability between early and late CEA in symptomatic patients.MethodsWe compared symptomatic stroke patients who underwent early CEA within 4 weeks of the last insult (group A; n = 15) with those who received CEA in the late stage beyond 4 weeks from the last symptom (group B; n = 57). They were divided into vulnerable (group Av, n = 13; group Bv, n = 33) and stable (group As, n = 2; group Bs, n = 24) subgroups according to the pathologic findings on their plaques. We studied the relationships among their primary symptoms, clinical findings, oxidized low-density lipoprotein levels, and gelatinase A (matrix metalloproteinase [MMP]-9) activity in their plaques and plasma.ResultsGroup A had a variety of symptoms; there was no difference in the outcome of CEA between groups A and B. The plaque and plasma oxidized low-density lipoprotein levels were higher in group A than in group B (P < .05). The incidence of pathologically vulnerable plaque was higher in group A than in group B. Plaque oxidized low-density lipoprotein levels and MMP-9 activity were similar in group Av and group Bv and were higher in those groups than in group As and Bs.ConclusionsWe first demonstrated that vulnerable plaques in patients subjected to early CEA manifested a remarkable increase in oxidized low-density lipoprotein and MMP-9 activation. Our findings suggest that early CEA may be beneficial in the aspect of oxidative stress

    Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses

    Get PDF
    Citation: Ishiguro, S., Uppalapati, D., Goldsmith, Z., Robertson, D., Hodge, J., Holt, H., . . . Tamura, M. (2017). Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. Plos One, 12(4), 21. https://doi.org/10.1371/journal.pone.0175064The newly purified extracellular polysaccharides (exopolysaccharides) from Parachlorella kessleri (PCEPS) were evaluated on their antitumor and immunomodulatory effects in cell culture and mouse colon carcinoma peritoneal dissemination model. In two-dimensional cell culture, the PCEPS treatment inhibited cell growth of both murine and human colon carcinoma cells in a dose- and time-dependent manner. In contrast, the growth of mouse splenocytes (SPLs) and bone marrow cells (BMCs) were stimulated by the treatment with PCEPS. The treatment with PCEPS also increased specific subpopulations of the cells in BMCs: antigen presenting cells (CD19(+) B cells, 33D1(+) dendritic cells and CD68(+) macrophage) and CD8(+) cytotoxic T cells. In three-dimensional spheroid culture, spheroid growth of CT26 cells co-cultured with HL-60 human neutrophilic promyeloblasts and Jurkat cells (human lymphoblasts), but not THP1 human monocyte/macrophage was significantly attenuated by PCEPS treatment. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of PCEPS (10 mg/kg, twice per week) significantly attenuated the growth of CT26 colon carcinoma in syngeneic mice. The present study suggests that PCEPS inhibits colon carcinoma growth via direct cell growth inhibition and a stimulation of the host antitumor immune responses. Taken together, the current study suggests that exopolysaccharides derived from Parachlorella kessleri contain significant bioactive materials that inhibit colon carcinoma growth

    C1B domain peptide of protein kinase Cγ significantly suppresses growth of human colon cancer cells in vitro and in an in vivo mouse xenograft model through induction of cell cycle arrest and apoptosis

    Get PDF
    Two peptides derived from the C1B domain of protein kinase Cγ (PKCγ) were shown to associate with classical PKC isozymes and modulate their activities. These C1B peptides are designated C1B1 (amino acid residues 101-112) and C1B5 (residues 141-151). Since PKC enzyme activity is shown to be involved in colon cancer development, the effect of C1B peptides on the growth of various human colon cancer cell lines was examined in vitro and in vivo. Sub-micromolar to micromolar levels of both C1B peptides induced approximately 60-70% growth attenuation in multiple colon cancer cell lines in a soft agar tumor colony assay; however, C1B5 peptide was not cytotoxic to normal colon epithelial cells in two dimensional culture. The effect of C1B5 peptide on colony growth of COLO205 cells was reversed by treatment with the PKCα/β inhibitor, Ro-32-0432. C1B peptide treatment attenuated COLO205 cells via two mechanisms: 1) cell cycle arrest and 2) stimulation of apoptosis. This is evident in G[subscript 2] arrest and increases in levels of cleaved caspase 3 and p53 phosphorylated at serine 20. Intratumoral injection of C1B5 peptide (20 mg/kg/day, every three days) markedly attenuated the growth of subcutaneous xenografts of COLO205 cells in SCID mice by 76% compared to the control. Taken together, these results strongly suggest that C1B peptides have negligible effects on normal tissues but are potentially effective chemotherapeutic agents for colon cancer

    Offshore-origin warm water inflows toward Totten Ice Shelf, East Antarctica

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Thu. 5 Dec. / 2F Auditorium , National Institute of Polar Researc

    Naïve rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses

    Get PDF
    Background: Un-engineered human and rat umbilical cord matrix stem cells (rUCMSC) attenuate growth of several types of tumors in mice and rats. However, the mechanism by which UCMSC attenuate tumor growth has not been studied rigorously. Methods- The possible mechanisms of tumor growth attenuation by rUCMSC were studied using orthotopic Mat B III rat mammary tumor grafts in female F344 rats. Tumor-infiltrating leukocytes were identified and quantified by immunohistochemical image analysis. Potential cytokines involved in lymphocyte infiltration in the tumors were determined by microarray and Western blot analysis. The Boyden chamber migration assay was performed for the functional analysis of identified cytokines. Results: rUCMSC markedly attenuated the tumor growth; this attenuation was accompanied by considerable lymphocyte infiltration. Immunohistochemical analysis revealed that the majority of infiltrating lymphocytes in the rUCMSC-treated tumors were CD3+ T cells. In addition, treatment with rUCMSC significantly increased infiltration of CD 8+ and CD4+ T cells and NK cells throughout tumor tissue. CD68+ monocytes/macrophages and FoxP3+ regulatory T cells were scarcely observed, only in the tumors of the PBS control group. Microarray analysis of rUCMSC identified that monocyte chemotactic protein (MCP)-1 is involved in rUCMSCinduced lymphocyte infiltration in the tumor tissues. Discussion: These results suggest that naïve rUCMSC attenuated mammary tumor growth at least in part by enhancing host anti-tumor immune responses. Thus, naïve UCMSC can be used as powerful therapeutic cells for breast cancer treatment, and MCP-1 may be a key molecule to enhance the effect of UCMSC at the tumor site

    Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

    Get PDF
    Citation: Ohta, N., Ishiguro, S., Kawabata, A., Uppalapati, D., Pyle, M., Troyer, D., . . . Tamura, M. (2015). Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes. Plos One, 10(5), 17. doi:10.1371/journal.pone.0123756Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naive UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression
    corecore