95 research outputs found

    Distal arthrogryposis with variable clinical expression caused by TNNI2 mutation

    Get PDF
    Distal arthrogryposis (DA) is a clinically and genetically heterogeneous disorder with multiple joint contractures. We describe a female DA patient with hand and foot deformities, and right-sided torticollis. Using exome sequencing, we identified a novel TNNI2 mutation (c.485>A, p.Arg162Lys) in the patient and her father. The father has no typical DA but hip dysplasia. This may explain the clinical features of DA2B in this family, but with variable clinical expression

    Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway

    Get PDF
    AbstractThe molecular mechanisms of assembly and budding of hepatitis C virus (HCV) remain poorly understood. The budding of several enveloped viruses requires an endosomal sorting complex required for transport (ESCRT), which is part of the cellular machinery used to form multivesicular bodies (MVBs). Here, we demonstrated that Hrs, an ESCRT-0 component, is critical for the budding of HCV through the exosomal secretion pathway. Hrs depletion caused reduced exosome production, which paralleled with the decrease of HCV replication in the host cell, and that in the culture supernatant. Sucrose-density gradient separation of the culture supernatant of HCV-infected cells revealed the co-existence of HCV core proteins and the exosome marker. Furthermore, both the core protein and an envelope protein of HCV were detected in the intraluminal vesicles of MVBs. These results suggested that HCV secretion from host cells requires Hrs-dependent exosomal pathway in which the viral assembly is also involved

    Late-onset spastic ataxia phenotype in a patient with a homozygous DDHD2 mutation

    Get PDF
    Autosomal recessive cerebellar ataxias and autosomal recessive hereditary spastic paraplegias (ARHSPs) are clinically and genetically heterogeneous neurological disorders. Herein we describe Japanese siblings with a midlife-onset, slowly progressive type of cerebellar ataxia and spastic paraplegia, without intellectual disability. Using whole exome sequencing, we identified a homozygous missense mutation in DDHD2, whose mutations were recently identified as the cause of early-onset ARHSP with intellectual disability. Brain MRI of the patient showed a thin corpus callosum. Cerebral proton magnetic resonance spectroscopy revealed an abnormal lipid peak in the basal ganglia, which has been reported as the hallmark of DDHD2-related ARHSP (SPG 54). The mutation caused a marked reduction of phospholipase A(1) activity, supporting that this mutation is the cause of SPG54. Our cases indicate that the possibility of SPG54 should also be considered when patients show a combination of adult-onset spastic ataxia and a thin corpus callosum. Magnetic resonance spectroscopy may be helpful in the differential diagnosis of patients with spastic ataxia phenotype.ArticleSCIENTIFIC REPORTS. 4:7132 (2014)journal articl

    Exome Sequencing Reveals a Homozygous SYT14 Mutation in Adult-Onset, Autosomal-Recessive Spinocerebellar Ataxia with Psychomotor Retardation

    Get PDF
    Autosomal-recessive cerebellar ataxias (ARCAs) are clinically and genetically heterogeneous disorders associated with diverse neurological and nonneurological features that occur before the age of 20. Currently, mutations in more than 20 genes have been identified, but approximately half of the ARCA patients remain genetically unresolved. In this report, we describe a Japanese family in which two siblings have slow progression of a type of ARCA with psychomotor retardation. Using whole-exome sequencing combined with homozygosity mapping, we identified a homozygous missense mutation in SYT14, encoding synaptotagmin XIV (SYT14). Expression analysis of the mRNA of SYT14 by a TaqMan assay confirmed that SYT14 mRNA was highly expressed in human fetal and adult brain tissue as well as in the mouse brain (especially in the cerebellum). In an in vitro overexpression system, the mutant SYT14 showed intracellular localization different from that of the wild-type. An immunohistochemical analysis clearly showed that SYT14 is specifically localized to Purkinje cells of the cerebellum in humans and mice. Synaptotagmins are associated with exocytosis of secretory vesicles (including synaptic vesicles), indicating that the alteration of the membrane-trafficking machinery by the SYT14 mutation may represent a distinct pathomechanism associated with human neurodegenerative disorders

    De Novo Mutations in GNAO1, Encoding a Gαo Subunit of Heterotrimeric G Proteins, Cause Epileptic Encephalopathy

    Get PDF
    Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements

    Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment

    Get PDF

    Natural killer cell function is intact after direct exposure to infectious hepatitis C virions

    No full text
    Although hepatitis C virus (HCV) has been shown to readily escape from virus-specific T and B cell responses, its effects on natural killer (NK) cells are less clear. Based on two previous reports that recombinant, truncated HCV E2 protein inhibits NK cell functions via crosslinking of CD81, it is now widely believed that HCV impairs NK cells as a means to establish persistence. However, the relevance of these findings has not been verified with HCV E2 expressed as part of intact virions. Here we employed a new cell culture system generating infectious HCV particles with genotype 1a and 2a structural proteins, and analyzed direct and indirect effects of HCV on human NK cells. Antibody-mediated crosslinking of CD16 stimulated and antibody-mediated crosslinking of CD81 inhibited NK cell activation and interferon gamma (IFN-γ) production. However, infectious HCV itself had no effect even at titers that far exceeded HCV RNA and protein concentrations in the blood of infected patients. Consistent with these results, anti-CD81 but not HCV inhibited NK cell cytotoxicity. These results were independent of the presence or absence of HCV-binding antibodies and independent of the presence or absence of other peripheral blood mononuclear cell populations. Conclusion: HCV 1a or 2a envelope proteins do not modulate NK cell function when expressed as a part of infectious HCV particles. Without direct inhibition by HCV, NK cells may become activated by cytokines in acute HCV infection and contribute to infection outcome and disease pathogenesis
    corecore