275 research outputs found

    On modelling of consolidation processes in geological materials

    Get PDF
    Low-permeablity materials may be seen as natural geological barriers for radioactive waste repositories. However, to ensure their safe performance, a good understanding of their mechanical properties is required. Although the standard Biot's poroelastic model is widely used to estimate the key properties of these materials, experimental observations differ from this mathematical formulation and suggest that a more complex rock deformation behaviour to include a creep effect is needed. In this study, the Biot's differential equations are modified to include a rheological skeleton. In comparison with other existing models, here we propose a formulation with a minimal parametric uncertainty: we show that with just one additional physically-based parameter, the experimental creep behaviour is properly described. This enhanced model is implemented within a finite element framework and employed in a fitting algorithm to extract the hydro-mechanical properties from experimental data. To illustrate its generality, we analyse laboratory tests performed on three different types of materials: (a) an unlithified lower Oligocene clay from Belgium (Boom Clay), (b) an indurated Jurassic mudrock (Callovo-Oxfordian mudstone) and (c) a Triassic siltstone (Mercia Mudstone Formation). Numerical fits to the data support the validity of this approach and demonstrate its applicability to a range of low-permeability materials regardless of mineralogy or burial history

    Stress controls on transport properties of the Mercia Mudstone Group: importance for hydrocarbon depletion and CO 2 injection

    Get PDF
    The physical properties of the Mercia Mudstone Group (MMG) are of interest to Carbon Capture and Storage (CCS) in the UK, both in terms of the sealing capacity of certain horizons and in order to assess scenarios involving CO2 migration in the overburden above potential CCS sites. In this study, the hydromechanical properties of MMG samples from the Larne Basin, Northern Ireland, were directly measured under steady-state conditions. Test samples were found to be good seals, with hydraulic permeabilities ranging from ≈2.1 x 10−18 to 8.4 x 10−21 m2 (2.1 x 10−3 to 8.5 x 10−6 mD). A detailed examination of the consolidation behaviour of the material yielded values for compressibility, hydraulic permeability and specific storage, as a function of effective pressure. Consolidation testing also provided preconsolidation pressure values of between 30 and 37 MPa. Test data were fitted to a linear elastic model using a two-dimension finite element approach, yielding hydraulic permeability and Young's Modulus, as a function of effective pressure. Findings suggest localisation of flow, due to small-scale heterogeneity, may play a role even in relatively large test samples. Results also highlight the impact of methodology on resulting permeabilities and the importance of using values measured at boundary conditions appropriate for the specific application. Critical state envelopes were derived from test data and used to conduct a scenario analysis, considering a range of stress paths, to examine the impacts of depletion and reinflation during CO2 injection. Initial stress conditions, stress path gradient and caprock heterogeneity were all found to be influencing factors on the potential for yield during depletion and the resulting deformation mode. The response to CO2 injection is less clear, but will be impacted by the initial caprock permeability and resulting drainage response. An awareness of these controls on caprock performance during stress path changes may aid in the selection of depleted CCS sites with geomechanically favourable characteristics for reinjection

    Spatiotemporal patterns of Sentinel-2 observations at image- and pixel-level of the Mexican territory between 2015 and 2019

    Full text link
    [ES] Actualmente, las imágenes Sentinel-2 son uno de los acervos multiespectrales y gratuitos de mayor resolución temporal, espectral y espacial para monitorear la superficie terrestre. Sin embargo, la posibilidad de utilizar este acervo para distintas aplicaciones está condicionada por el número de observaciones sin nubes disponibles para una ventana espacio-temporal determinada. Por ello, este artículo tuvo el objetivo de analizar el número de observaciones de Sentinel-2 disponibles para el territorio mexicano a nivel de imagen y de pixel. En el primer caso, se contabilizó el total de imágenes disponibles por año y su porcentaje de nubosidad; mientras que, en el segundo, se calculó el número de observaciones despejadas por pixel. Además, para tomar en cuenta la diversidad del territorio, se evaluó el promedio mensual de las observaciones por pixel de cada una de las siete ecorregiones del país, así como la proporción de su superficie con por lo menos una observación despejada en intervalos mensuales, bimestrales, trimestrales y anuales. Los resultados mostraron que el número de observaciones válidas por pixel variaron entre 0 y 121 observaciones al año y entre 0 y 6.58 al mes. Adicionalmente, se observó que en el periodo 2017 – 2019 se pueden obtener observaciones de todo el país en ventanas anuales, mientras que en el periodo 2018 – 2019, se pueden obtener observaciones en intervalos mensuales o trimestrales, dependiendo de la ecorregión. Finalmente, consideramos que los resultados de este trabajo servirán de guía para los usuarios interesados en utilizar estas imágenes para distintos estudios.[EN] Sentinel-2 imagery has the highest temporal, spectral and spatial resolution to monitor land surface among the freely available multispectral collections. However, the possibility to use these images in different applications is conditioned by the number of cloudless observations available for a certain spatiotemporal window. Thus, the objective of this article is to analyze the number of Sentinel-2 observations available for the Mexican territory at image and pixel level. In the first case, the total number of available images and its cloud cover percentage was calculated; while in the second case, the number of cloudless observations was estimated for each pixel. Additionally, in order to take into account the territory diversity, the monthly mean number of cloudless observations, as well as the proportion of its surface with at least one cloudless observation in monthly, bimonthly, trimonthly and annual intervals, was computed for each one of the seven ecoregions of the country. The results show that annually, the number of valid observations per pixel is between 0 and 121 observations, while in monthly evaluations, between 0 and 6.58 observations. Additionally, in the 2017-2019 period annual observations can be obtained for the entire Mexican land surface, while in 2018-2019, monthly or trimonthly evaluations can be achieved, depending on the ecoregion. We consider that these results will provide useful information for researchers that are interested in using Sentinel-2 imagery for different applications.El primer autor agradece al CONACyT por la beca otorgada para realizar sus estudios de posgrado. Agradecemos a dos revisores anónimos por sus comentarios que nos ayudaron a mejorar significativamente el manuscrito de este artículoSolórzano, J.; Mas, J.; Gao, Y.; Gallardo-Cruz, J. (2020). Patrones espaciotemporales de las observaciones de Sentinel-2 a nivel de imagen y píxel sobre el territorio mexicano entre 2015 y 2019. Revista de Teledetección. 0(56):103-115. https://doi.org/10.4995/raet.2020.14044OJS10311505

    Scoping study examining the behaviour of Boom Clay at disposal depths investigated in OPERA

    Get PDF
    The Onderzoeks Programma Eindberging Radioactief Afval (OPERA) is the third national research programme for the geological disposal of radioactive waste in the Netherlands, operating during the period 2011 to 2017. The rock types to host a geological disposal facility that are currently being considered in the Netherlands are salt and clay. Earlier Dutch work focussed mostly on salt, but the present programme OPERA is focused on a specific clay formation the Boom Clay. Previous studies have primarily focused on examining behaviour at the Belgium reference depth (~220m). The work presented in this study extends this knowledge-base to repository depths of potential interest in the Netherlands (~500m). In this report, results from a scoping study examining the hydromechanical properties of Boom Clay are presented, including investigations on consolidation, swelling, hydraulic, gas and deformation behaviour. These were performed on preserved core material retrieved from the HADES underground research laboratory, Belgium. Sections of core were then consolidated to a depth representative of the Netherlands. Permeability was sensitive to stress state and thermal load, though incremental changes in NaCl concentration had minimal impact. Hysteresis was observed in thermally induced changes in permeability. Gas entry was closely linked to the minimum principal stress component, with mass and volume changes of samples observed as a result of gas migration. Stress, porewater pressure and gas flow were integrally linked with pathways evolving temporally and spatially. A transition from brittle to ductile deformation was noted with increasing stress in both compression and shear. Boom Clay is both complex and anisotropic in its behaviour

    Drag force in SYM plasma with B field from AdS/CFT

    Get PDF
    We investigate drag force in a thermal plasma of N=4 super Yang-Mills theory via both fundamental and Dirichlet strings under the influence of non-zero NSNS BB-field background. In the description of AdS/CFT correspondence the endpoint of these strings correspondes to an external monopole or quark moving with a constant electromagnetic field. We demonstrate how the configuration of string tail as well as the drag force obtains corrections in this background.Comment: 13 pages, 2 figures, more discussion and reference adde

    Advective gas flow in bentonite: development and comparison of enhanced multi-phase numerical approaches

    Get PDF
    Understanding the impact of repository gas, generated from degradation of waste and its interaction with the host rock, is essential when assessing the performance and safety function of long-term disposal systems for radioactive waste. Numerical models based on conventional multi-phase flow theory have historically been applied to predict the outcome and impact of gas flow on different repository components. However, they remain unable to describe the full complexity of the physical processes observed in water-saturated experiments (e.g., creation of dilatant pathways) and thus, the development of novel representations for their description is required when assessing fully saturated clay-based systems. This was the primary focus of Task A within the international cooperative project DECOVALEX-2019 (D-2019) and refinement of these approaches is the primary focus of this study (Task B in the current phase of DECOVALEX-2023). This paper summarises development of enhanced numerical representations of key processes and compares the performance of each model against high-quality laboratory test data. Experimental data reveals that gas percolation in water-saturated compacted bentonite is characterised by four key features: (i) a quiescence phase, followed by (ii) the gas breakthrough, which leads to a (iii) peak value, which is then followed by (iv) a negative decay. Three models based on the multiphase flow theory have been developed. These models can provide good initial values and reasonable responses for gas breakthrough (although some of them still predict a too-smooth response). Peak gas pressure values are in general reasonably well captured, although maximum radial stress differences are observed at 48 mm from the base of the sample. Here, numerical peak values of 12.8 MPa are predicted, whereas experimental values are about 11 MPa. These models are also capable of providing a reasonable representation of the negative pressure decay following peak pressure. However, other key specific features (such as the timing of gas breakthrough) still require a better representation. The model simulations and their comparison with experimental data show that these models need to be further improved with respect to model parameter calibration, the numerical representation of spatial heterogeneities in material properties and flow localisation, and the upscaling of the related physical processes and parameters. To further understand gas flow localisation, a new conceptual model has been developed, which shows that discrete channels can possibly be induced through the instability of gas-bentonite interface during gas injection, thus providing a new perspective for modeling gas percolation in low-permeability deformable media

    Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling: a case study

    Get PDF
    The objective of this study is to compare the abilities of logistic, auto-logistic and artificial neural network (ANN) models for quantifying the relationships between land uses and their drivers. In addition, the application of the results obtained by the three techniques is tested in a dynamic land-use change model (CLUE-s) for the Paochiao watershed region in Taiwan. Relative operating characteristic curves (ROCs), kappa statistics, multiple resolution validation and landscape metrics were used to assess the ability of the three techniques in estimating the relationship between driving factors and land use and its subsequent application in land-use change models. The validation results illustrate that for this case study ANNs constitute a powerful alternative for the use of logistic regression in empirical modeling of spatial land-use change processes. ANNs provide in this case a better fit between driving factors and land-use pattern. In addition, auto-logistic regression performs better than logistic regression and nearly as well as ANNs. Auto-logistic regression and ANNs are considered especially useful when the performance of more conventional models is not satisfactory or the underlying data relationships are unknown. The results indicate that an evaluation of alternative techniques to specify relationships between driving factors and land use can improve the performance of land-use change models

    Metagenomic analysis of viruses, bacteria and protozoa in irrigation water

    Full text link
    [EN] Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.This work was supported through a grant funded by the Spanish Ministry of Economy and Competitiveness (MINECO) in the frame of the collaborative international consortium JPIW2013-095-C03-01, JPIW2013-095-C03-02 and JPIW2013-095-C03-03 of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call and partially by AGL2017-86797-C2-1-R. Silvia Bofill-Mas is a Serra-Hunter fellow at the University of Barcelona.Rusiñol, M.; Martinez-Puchol, S.; Timoneda, N.; Fernandez-Cassi, X.; Pérez-Cataluña, A.; Fernández-Bravo, A.; Moreno-Mesonero, L.... (2020). Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. International Journal of Hygiene and Environmental Health. 224. https://doi.org/10.1016/j.ijheh.2019.113440S22

    Stochastic dynamics of particles trapped in turbulent flows

    Get PDF
    The long-time dynamics of large particles trapped in two nonhomogeneous turbulent shear flows is studied experimentally. Both flows present a common feature, a shear region that separates two colliding circulations, but with different spatial symmetries and temporal behaviors. Because large particles are less and less sensitive to flow fluctuations as their size increases, we observe the emergence of a slow dynamics corresponding to back-and-forth motions between two attractors, and a super-slow regime synchronized with flow reversals when they exist. Such dynamics is substantially reproduced by a one-dimensional stochastic model of an overdamped particle trapped in a two-well potential, forced by a colored noise. An extended model is also proposed that reproduces observed dynamics and trapping without potential barrier: the key ingredient is the ratio between the time scales of the noise correlation and the particle dynamics. A total agreement with experiments requires the introduction of spatially nonhomogeneous fluctuations and a suited confinement strength

    Numerical modelling of gas flow in a compact clay barrier for DECOVALEX-2019

    Get PDF
    The mechanisms controlling the movement of gases through geological disposal facilities can be described by models accounting for (i) diffusion, (ii) two-phase flow, (iii) localised flow pathways and (iv) gas fracturing of the rock. It is therefore necessary to consider all these phenomena for a better understanding of the processes governing the movement of gases in low permeability materials. The purpose of Task A in the current phase of the DEvelopment of COupled models and their VALidation against Experiments (DECOVALEX) project is to better understand the processes governing the advective movement of gas. In this paper, a synthesis of the ongoing work of eight participating modelling teams is presented. A wide range of 2D and 3D approaches including (i) continuous strategies assuming different mechanical deformation behaviors, (ii) continuous models with distinct phases or embedded fractures and (iii) discrete models with different formulations are validated against a gas flow test on pre-compacted bentonite undertaken by the British Geological Survey. The results of the ongoing work show that after a calibration process, plausible descriptions of the laboratory experiment can be achieved
    corecore