12 research outputs found

    CRISPR Systems for COVID-19 Diagnosis

    Get PDF
    The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RTqPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPRbased diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system

    Enhanced In Vivo Radiotherapy of Breast Cancer Using Gadolinium Oxide and Gold Hybrid Nanoparticles

    No full text
    Radiation therapy has demonstrated promising effectiveness against several types of cancers. X-ray radiation therapy can be made further effective by utilizing nanoparticles of high-atomic-number (high-Z) materials that act as radiosensitizers. Here, in purpose of maximizing the radiation therapy within tumors, bovine serum albumin capped gadolinium oxide and gold nanoparticles (Gd2O3@BSA-Au NPs) are developed as a bimetallic radiosensitizer. In this study, we incorporate two high-Z-based nanoparticles, Au and Gd, in a single nanoplatform. The radiosensitizing ability of the nanoparticles was assessed with a series of in vitro tests, following evaluation in vivo in a breast cancer murine model. Enhanced tumor suppression is observed in the group that received radiation after administration of Gd2O3@BSA-Au NPs. As a result, cancer therapy efficacy is significantly improved by applying Gd2O3@BSA-Au NPs under X-ray irradiation, as evidenced by studies evaluating cell viability, proliferation, reactive oxygen species production, and in vivo anti-tumor effect

    Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor

    No full text
    © 2023Noble metals as high atomic number elements can localize X-ray radiation within tumor cells by exploiting different mechanisms. Here, alginate (Alg)-coated platinum nanoparticles (Pt@Alg) were synthesized, characterized, and implemented as a radiosensitizer to enhance X-ray therapeutic efficacy in breast cancer in vitro and in vivo. Alg not only improves the biocompatibility of the radioenhancer, but also stabilizes the nanoparticles. Pt@Alg was studied by different characterization methods including DLS, STEM, Fe-SEM, XRD, XPS, FT-IR and UV–Vis spectrophotometry. The nanosystem provided a higher level of intracellular ROS in malignant cells and enhanced cancer cell death under X-Ray irradiation. Clonogenic assay also demonstrated the radiosensitizing properties of the nanosystem, in vitro. In vivo result show tumor growth restraining properties of the nanosystem when it was administrated along with X-Ray irradiation. Histopathology results confirmed the impact of nanosystem and X-ray co-treatment, as well. Altogether, the importance of radiosensitizers for improving radiotherapy outcomes was highlighted

    Preparation and evaluation of bismuth sulfide and magnetite-based theranostic nanohybrid as drug carrier and dual MRI/CT contrast agent

    No full text
    Due to the increased incidence and population growth that has been leading to growing number of cases worldwide, early diagnosis and treatment of cancer is crucial. Low density cancer tissue cannot be diagnosed before progressing toward a metastatic stage. Thus, theranostic systems play a significant role in assisting timely diagnosis and treatment. The combination of magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents in a single probe is of high importance and necessity, where individual strengths of each approach can be merged while shortcomings of each modality could be compensated. With this motivation, we have developed and synthesized Bi2S3@BSA-Fe3O4 nanoparticles as a dual MRI/CT contrast agent and carrier of curcumin (CUR) as natural anticancer drug. The nanoparticles shortened both the longitudinal (T-1) and transverse (T-2), MRI relaxation times, with a more distinct effect on producing negative contrast (T-2) images with a relaxivity (r(2)) of 54.73 mM(-1) s(-1). The magnetite/bismuth hybrid nanoparticle also was capable of increasing CT image contrast. Further, in vitro cytotoxicity assay showed high biocompatibility of the synthesized nanoparticles. Furthermore, in vitro cytotoxicity assay on cancer cells showed high anticancer activity of the synthesized nanoparticles

    Facile preparation of silver based radiosensitizers via biomineralization method for enhanced in vivo breast cancer radiotherapy

    No full text
    Abstract To solve the traditional radiotherapy obstacles, and also to enhance the radiation therapy efficacy various radiosensitizers have been developed. Radiosensitizers are promising agents that under X-ray irradiation enhance injury to tumor tissue by accelerating DNA damage. In this report, silver-silver sulfide nanoparticles (Ag-Ag2S NPs) were synthesized via a facile, one-pot and environmentally friendly biomineralization method. Ag-Ag2S was coated with bovine serum albumin (BSA) in situ and applied as an X-ray sensitizer to enhance the efficiency of radiotherapy. Also, folic acid (FA) was conjugated to Ag-Ag2S@BSA to impart active targeting capability to the final formulation (Ag-Ag2S@BSA-FA). Prepared NPs were characterized by transmission electron microscopes (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS), ultraviolet–visible spectroscopy (UV–Vis), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. Results show that most of the NPs have well-defined uniform Janus structures. The biocompatibility of the NPs was then evaluated both in vitro and in vivo. A series of in vitro assays were performed on 4T1 cancer cells to evaluate the therapeutic efficacy of the designed NPs. In addition, the radio-enhancing ability of the NPs was tested on the 4T1 breast cancer murine model. MTT, live and dead cell staining, apoptosis, ROS generation, and clonogenic in vitro assays demonstrated the efficacy of NPs as radiosensitizers in radiotherapy. In vivo results as well as H&E staining tumor tissues confirmed tumor destruction in the group that received Ag-Ag2S@BSA-FA NPs and exposed to X-ray. The results showed that prepared tumor-targeted Ag-Ag2S@BSA-FA NPs could be potential candidates as radiosensitizers for enhanced radiotherapy

    Targeted CuFe2O4 hybrid nanoradiosensitizers for synchronous chemoradiotherapy

    No full text
    © 2022 Elsevier B.V.Multifunctional nanoplatforms based on novel bimetallic nanoparticles have emerged as effective radiosensitizers owing to their potential capability in cancer cells radiosensitization. Implementation of chemotherapy along with radiotherapy, known as synchronous chemoradiotherapy, can augment the treatment efficacy. Herein, a tumor targeted nanoradiosensitizer with synchronous chemoradiotion properties, termed as CuFe2O4@BSA-FA-CUR, loaded with curcumin (CUR) and modified by bovine serum albumin (BSA) and folic acid (FA) was developed to enhance tumor accumulation and promote the anti-cancer activity while attenuating adverse effects. Both copper (Cu) and iron (Fe) were utilized in the construction of these submicron scale entities, therefore strong radiosensitization effect is anticipated by implementation of these two metals. The structure–function relationships between constituents of nanomaterials and their function led to the development of nanoscale materials with great radiosensitizing capacity and biosafety. BSA was used to anchor Fe and Cu ions but also to improve colloidal stability, blood circulation time, biocompatibility, and further functionalization. Moreover, to specifically target tumor sites and enhance cellular uptake, FA was conjugated onto the surface of hybrid bimetallic nanoparticles. Finally, CUR as a natural chemotherapeutic agent was encapsulated into the developed bimetallic nanoparticles. With incorporation of all abovementioned stages into one multifunctional nanoplatform, CuFe2O4@BSA-FA-CUR is produced for synergistic chemoradiotherapy with positive outcomes. In vitro investigation revealed that these nanoplatforms bear excellent biosafety, great tumor cell killing ability and radiosensitizing capacity. In addition, high cancer-suppression efficiency was observed through in vivo studies. It is worth mentioning that co-use of CuFe2O4@BSA-FA-CUR nanoplatforms and X-ray radiation led to complete tumor ablation in almost all of the treated mice. No mortality or radiation-induced normal tissue toxicity were observed following administration of CuFe2O4@BSA-FA-CUR nanoparticles which highlights the biosafety of these submicron scale entities. These results offer powerful evidence for the potential capability of CuFe2O4@BSA-FA-CUR in radiosensitization of malignant tumors and opens up a new avenue of research in this area
    corecore