844 research outputs found
Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities
Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions
Advanced Techniques for Improving the Efficacy of Digital Forensics Investigations
Digital forensics is the science concerned with discovering, preserving, and analyzing evidence on digital devices. The intent is to be able to determine what events have taken place, when they occurred, who performed them, and how they were performed. In order for an investigation to be effective, it must exhibit several characteristics. The results produced must be reliable, or else the theory of events based on the results will be flawed. The investigation must be comprehensive, meaning that it must analyze all targets which may contain evidence of forensic interest. Since any investigation must be performed within the constraints of available time, storage, manpower, and computation, investigative techniques must be efficient. Finally, an investigation must provide a coherent view of the events under question using the evidence gathered. Unfortunately the set of currently available tools and techniques used in digital forensic investigations does a poor job of supporting these characteristics. Many tools used contain bugs which generate inaccurate results; there are many types of devices and data for which no analysis techniques exist; most existing tools are woefully inefficient, failing to take advantage of modern hardware; and the task of aggregating data into a coherent picture of events is largely left to the investigator to perform manually. To remedy this situation, we developed a set of techniques to facilitate more effective investigations. To improve reliability, we developed the Forensic Discovery Auditing Module, a mechanism for auditing and enforcing controls on accesses to evidence. To improve comprehensiveness, we developed ramparser, a tool for deep parsing of Linux RAM images, which provides previously inaccessible data on the live state of a machine. To improve efficiency, we developed a set of performance optimizations, and applied them to the Scalpel file carver, creating order of magnitude improvements to processing speed and storage requirements. Last, to facilitate more coherent investigations, we developed the Forensic Automated Coherence Engine, which generates a high-level view of a system from the data generated by low-level forensics tools. Together, these techniques significantly improve the effectiveness of digital forensic investigations conducted using them
Thermal neutron analysis for improvised explosive device detection
In this dissertation, the design of a system to detect improvised explosive devices is considered. The technique utilized is thermal neutron analysis. In this method, thermal neutrons are used to interrogate a volume for the presence of nitrogen, which is used as an indicator of explosive, given its unusual high energy line in the gamma ray spectrum generated by thermal capture reactions on explosive material. The performance of the system is then considered for a number of devices used to represent an improvised explosive device, including a 155 mm shell, an antitank mine, and a air to surface bomb. The system is shown to be capable of detecting IEDs within between 15.6 and 3800 seconds for HPGe detectors, and within 277 seconds for the best case scenario with NaI while more deeply buried explosives are shown to be undetectable by NaI
Creation of Controlled Defects Inside Colloidal Crystal Arrays with a Focused Ion Beam
In this work the reliability of the focused-ion-beam (FIB) patterning on polystyrene (PS) colloidal crystals at different scales is determined. Ordered arrays of PS spheres (465 nm) are successfully modified by selectively removing a single sphere. The water-vapor assisted FIB milling is crucial to obtain this result. Furthermore, isolated PS spheres are FIB drilled with or without chemically enhanced milling aiming at the exploration of the limits of such a technique. These controlled defects created using the FIB-assisted techniques may be helpful in preparing mockups of photonic crystals, sensors or as colloidal masks for diverse lithographic processes
- …