126 research outputs found

    A transcriptional analysis reveals an extensive range of genes responsible for increasing the tolerance of Carrizo citrange to oxygen deficiency

    Get PDF
    Little information is available on the Citrus genus and its relatives with regard to their ability to tolerate oxygen deficiency, establishing physiological and structural modifications. In order to gain insight into how citrus rootstocks respond to low-oxygen stress, a transcriptomic analysis (using a custom microarray) was performed on Carrizo citrange (CC) seedlings. These seedlings were transformed with OsMybleu transcription factor (TF), known for inducing tolerance to oxygen deficiency, and compared with CC wildtype. They were flushed for 24 h with N2 and microarray, carrying out expressed sequence tags of Citrus and relatives isolated from the roots, was hybridized with RNA of roots before and after hypoxia treatment. The genes involved in fermentation, Krebs cycle, sugar metabolism, cell wall metabolism, hormones, and TFs all resulted significantly altered in response to hypoxia in both samples. Quantitative expression analysis was performed on 42 selected genes to validate microarray results. The outcome was that most of them were confirmed. The main results lead to the conclusion that CC is naturally tolerant to oxygen limitation. Transformed CC responded to hypoxia by activating the main genes which are known in other plants to be responsible for this type of tolerance such as pyruvate decarboxylase and alcohol dehydrogenase. Among TFs, several were also induced, such as an HDZipIII homologous to AtHB15, target of mir166, itself overexpressed exclusively in transformed CC under hypoxia compared with all other samples. The present manuscript represents one of the very few investigative works focused on hypoxia-responsive transcriptional networks in citru

    The role of genetics and epigenetics in the pathogenesis of systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a complex autoimmune disease of unclear aetiology. A multitude of genetic studies, ranging from candidate-gene studies to genome-wide association studies, have identified a large number of genetic susceptibility factors for SSc and its clinical phenotypes, but the contribution of these factors to disease susceptibility is only modest. However, in an endeavour to explore how the environment might affect genetic susceptibility, epigenetic research into SSc is rapidly expanding. Orchestrated by environmental factors, epigenetic modifications can drive genetically predisposed individuals to develop autoimmunity, and are thought to represent the crossroads between the environment and genetics in SSc. Therefore, in addition to providing a comprehensive description of the current understanding of genetic susceptibility underlying SSc, this Review describes the involvement of epigenetic phenomena, including DNA methylation patterns, histone modifications and microRNAs, in SSc

    The Long Non-coding RNA NRIR Drives IFN-Response in Monocytes: Implication for Systemic Sclerosis

    Get PDF
    TLR4 activation initiates a signaling cascade leading to the production of type I IFNs and of the downstream IFN-stimulated genes (ISGs). Recently, a number of IFN-induced long non-coding RNAs (lncRNAs) that feed-back regulate the IFN response have been identified. Dysregulation of this process, collectively known as the “Interferon (IFN) Response,” represents a common molecular basis in the development of autoimmune and autoinflammatory disorders. Concurrently, alteration of lncRNA profile has been described in several type I IFN-driven autoimmune diseases. In particular, both TLR activation and the upregulation of ISGs in peripheral blood mononuclear cells have been identified as possible contributors to the pathogenesis of systemic sclerosis (SSc), a connective tissue disease characterized by vascular abnormalities, immune activation, and fibrosis. However, hitherto, a potential link between specific lncRNA and the presence of a type I IFN signature remains unclear in SSc. In this study, we identified, by RNA sequencing, a group of lncRNAs related to the IFN and anti-viral response consistently modulated in a type I IFN-dependent manner in human monocytes in response to TLR4 activation by LPS. Remarkably, these lncRNAs were concurrently upregulated in a total of 46 SSc patients in different stages of their disease as compared to 18 healthy controls enrolled in this study. Among these lncRNAs, Negative Regulator of the IFN Response (NRIR) was found significantly upregulated in vivo in SSc monocytes, strongly correlating with the IFN score of SSc patients. Weighted Gene Co-expression Network Analysis showed that NRIR-specific modules, identified in the two datasets, were enriched in “type I IFN” and “viral response” biological processes. Protein coding genes common to the two distinct NRIR modules were selected as putative NRIR target genes. Fifteen in silico-predicted NRIR target genes were experimentally validated in NRIR-silenced monocytes. Remarkably, induction of CXCL10 and CXCL11, two IFN-related chemokines associated with SSc pathogenesis, was reduced in NRIR-knockdown monocytes, while their plasmatic level was increased in SSc patients. Collectively, our data show that NRIR affects the expression of ISGs and that dysregulation of NRIR in SSc monocytes may account, at least in part, for the type I IFN signature present in SSc patients

    Multi-Step Regulation of the TLR4 Pathway by the miR-125a~99b~let-7e Cluster

    Get PDF
    An appropriate immune response requires a tight balance between pro- and anti-inflammatory mechanisms. IL-10 is induced at late time-points during acute inflammatory conditions triggered by TLR-dependent recognition of infectious agents and is involved in setting this balance, operating as a negative regulator of the TLR-dependent signaling pathway. We identified miR-125a~99b~let-7e as an evolutionary conserved microRNA cluster late-induced in human monocytes exposed to the TLR4 agonist LPS as an effect of this IL-10-dependent regulatory loop. We demonstrated that microRNAs generated by this cluster perform a pervasive regulation of the TLR signaling pathway by direct targeting receptors (TLR4, CD14), signaling molecules (IRAK1), and effector cytokines (TNFα, IL-6, CCL3, CCL7, CXCL8). Modulation of miR-125a~99b~let-7e cluster influenced the production of proinflammatory cytokines in response to LPS and the IL-10-mediated tolerance to LPS, thus identifying this gene as a previously unrecognized major regulatory element of the inflammatory response and endotoxin tolerance

    Identification of a miR-146b-FasL axis in the development of neutropenia in T large granular lymphocyte leukemia

    Get PDF
    T Large Granular Lymphocytes leukemia is characterized by the expansion of several Large Granular Lymphocyte clones, among which a subset of Large Granular Lymphocytes showing constitutively activated STAT3, a specific CD8+/CD4- phenotype and the presence of neutropenia has been identified. Although STAT3 is an inducer of transcription of a large number of oncogenes, so far its relationship with miRNA has not been evaluated in T-Large Granular Lymphocyte Leukemia patients. Here, we investigated whether STAT3 could carry out its pathogenetic role in T-Large Granular Lymphocyte Leukemia through an altered expression of miRNAs. The expression level of 756 mature miRNAs was assessed on purified T-LGLs by using a TaqMan Human microRNA Array. Hierarchical Clustering Analysis of miRNA array data shows that the global miRNome clusters with CD8 T-Large Granular Lymphocytes. Remarkably, CD8 T-Large Granular Lymphocytes exhibit a selective and STAT3-dependent repression of miR-146b expression, that significantly correlated with the absolute neutrophil counts and inversely correlated with the expression of FasL, that is regarded as the most relevant factor in the pathogenesis of neutropenia. Experimental evidence demonstrates that the STAT3-dependent reduction of miR-146b expression in CD8 T-Large Granular Lymphocytes occurs as a consequence of miR-146b promoter hypermethylation and results in the disruption of the HuR-mediated post-transcriptional machinery controlling FasL mRNA stabilization. Restoring miR-146b expression in CD8 T-Large Granular Lymphocytes lead to a reduction of HuR protein and, in turn, of FasL mRNA expression, thus providing mechanistic insights for the existence of a STAT3-miR146b-FasL axis and neutropenia in T-Large Granular Lymphocyte Leukemia

    Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils

    Get PDF
    How IL-6 expression is regulated in human neutrophils has remained unclear. Here the authors show, using highly purified neutrophils, that TLR8 or TLR4 signalling activates latent enhancers and cooperates with autocrine TNFα to induce IL-6 transcription

    A Rapid and Accurate MinION-Based Workflow for Tracking Species Biodiversity in the Field

    Get PDF
    Genetic markers (DNA barcodes) are often used to support and confirm species identification. Barcode sequences can be generated in the field using portable systems based on the Oxford Nanopore Technologies (ONT) MinION sequencer. However, to achieve a broader application, current proof-of-principle workflows for on-site barcoding analysis must be standardized to ensure a reliable and robust performance under suboptimal field conditions without increasing costs. Here, we demonstrate the implementation of a new on-site workflow for DNA extraction, PCR-based barcoding, and the generation of consensus sequences. The portable laboratory features inexpensive instruments that can be carried as hand luggage and uses standard molecular biology protocols and reagents that tolerate adverse environmental conditions. Barcodes are sequenced using MinION technology and analyzed with ONTrack, an original de novo assembly pipeline that requires as few as 1000 reads per sample. ONTrack-derived consensus barcodes have a high accuracy, ranging from 99.8 to 100%, despite the presence of homopolymer runs. The ONTrack pipeline has a user-friendly interface and returns consensus sequences in minutes. The remarkable accuracy and low computational demand of the ONTrack pipeline, together with the inexpensive equipment and simple protocols, make the proposed workflow particularly suitable for tracking species under field conditions

    Investigation of the transcriptomic and metabolic changes associated with superficial scald physiology impaired by lovastatin and 1-methylcyclopropene in pear fruit (cv. “Blanquilla”)

    Get PDF
    To elucidate the physiology underlying the development of superficial scald in pears, susceptible “Blanquilla” fruit was treated with different compounds that either promoted (ethylene) or repressed (1-methylcyclopropene and lovastatin) the incidence of this disorder after 4 months of cold storage. Our data show that scald was negligible for the fruit treated with 1-methylcyclopropene or lovastatin, but highly manifested in untreated (78% incidence) or ethylene-treated fruit (97% incidence). The comparison between the fruit metabolomic profile and transcriptome evidenced a distinct reprogramming associated with each treatment. In all treated samples, cold storage led to an activation of a cold-acclimation-resistance mechanism, including the biosynthesis of very-long-chain fatty acids, which was especially evident in 1-methylcyclopropane-treated fruit. Among the treatments applied, only 1-methylcyclopropene inhibited ethylene production, hence supporting the involvement of this hormone in the development of scald. However, a common repression effect on the PPO gene combined with higher sorbitol content was found for both lovastatin and 1-methylcyclopropene-treated samples, suggesting also a non-ethylene-mediated process preventing the development of this disorder. The results presented in this work represent a step forward to better understand the physiological mechanisms governing the etiology of superficial scald in pears.info:eu-repo/semantics/publishedVersio

    SOX2: Not always eye malformations. Severe genital but no major ocular anomalies in a female patient with the recurrent c.70del20 variant

    Get PDF
    SOX2 variants have been identified in multiple patients with severe ocular anomalies and pituitary dysfunction, in addition to various systemic features. We investigated a 26-year-old female patient suffering from spastic paraparesis, hypoplasia of corpus callosum, hypogonadotropic hypogonadism (HH) and intellectual disability, who was monitored for over 20 years, allowing a detailed genotype-phenotype correlation along time. Whole exome sequencing on the patient and her relatives identified a de novo SOX2 c.70del20 variant, which has been frequently reported in individuals with SOX2-related anophthalmia. Importantly, our patient lacked major ocular phenotype but showed vaginal agenesis, a feature never reported before. Although the involvement of male urogenital tract (cryptorchidism, hypospadias, small penis), is a well known consequence of SOX2 variants, their effect on the female genitalia has never been properly addressed, even considering the paradoxical female excess of SOX2 cases in the literature. Our findings emphasize the importance of testing for SOX2 variants in individuals with HH and genital anomalies even though anophthalmia or microphthalmia are not observed. Moreover, our case strengthens the role of SOX2 as a master regulator of female gonadal differentiation, as widely demonstrated for other SOX genes related to 46, XX sex reversal, such as SOX3 and SOX9
    • …
    corecore