39 research outputs found

    Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes

    Get PDF
    Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46×10−8) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5×10−5) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individual

    Genetic structure of Europeans: a view from the North-East

    No full text
    Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (lambda) (ranging from 1.00 to 4.21), fixation index (F(st)) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS)

    Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes

    Get PDF
    Animal microRNAs (miRNAs) regulate gene expression through base pairing to their targets within the 3' untranslated region (UTR) of protein-coding genes. Single-nucleotide polymorphisms (SNPs) located within such target sites can affect miRNA regulation. We mapped annotated SNPs onto a collection of experimentally supported human miRNA targets. Of the 143 experimentally supported human target sites, 9 contain 12 SNPs. We further experimentally investigated one of these target sites for hsa-miR-155, within the 3' UTR of the human AGTR1 gene that contains SNP rs5186. Using reporter silencing assays, we show that hsa-miR-155 down-regulates the expression of only the 1166A, and not the 1166C, allele of rs5186. Remarkably, the 1166C allele has been associated with hypertension in many studies. Thus, the 1166C allele may be functionally associated with hypertension by abrogating regulation by hsa-miR-155, thereby elevating AGTR1 levels. Since hsa-miR-155 is on chromosome 21, we hypothesize that the observed lower blood pressure in trisomy 21 is partially caused by the overexpression of hsa-miR-155 leading to allele-specific underexpression of AGTR1. Indeed, we have shown in fibroblasts from monozygotic twins discordant for trisomy 21 that levels of AGTR1 protein are lower in trisomy 21

    Tandem repeat sequence variation as causative cis-eQTLs for protein-coding gene expression variation: the case of CSTB.

    No full text
    Association studies have revealed expression quantitative trait loci (eQTLs) for a large number of genes. However, the causative variants that regulate gene expression levels are generally unknown. We hypothesized that copy-number variation of sequence repeats contribute to the expression variation of some genes. Our laboratory has previously identified that the rare expansion of a repeat c.-174CGGGGCGGGGCG in the promoter region of the CSTB gene causes a silencing of the gene, resulting in progressive myoclonus epilepsy. Here, we genotyped the repeat length and quantified CSTB expression by quantitative real-time polymerase chain reaction in 173 lymphoblastoid cell lines (LCLs) and fibroblast samples from the GenCord collection. The majority of alleles contain either two or three copies of this repeat. Independent analysis revealed that the c.-174CGGGGCGGGGCG repeat length is strongly associated with CSTB expression (P = 3.14 × 10(-11)) in LCLs only. Examination of both genotyped and imputed single-nucleotide polymorphisms (SNPs) within 2 Mb of CSTB revealed that the dodecamer repeat represents the strongest cis-eQTL for CSTB in LCLs. We conclude that the common two or three copy variation is likely the causative cis-eQTL for CSTB expression variation. More broadly, we propose that polymorphic tandem repeats may represent the causative variation of a fraction of cis-eQTLs in the genome

    Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications

    No full text
    Understanding the molecular basis of cardiomyocyte development is critical for understanding the pathogenesis of pre- and post-natal cardiac disease. MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression that play an important role in many developmental processes. Here, we show that the miR-99a/let-7c cluster, mapping on human chromosome 21, is involved in the control of cardiomyogenesis by altering epigenetic factors. By perturbing miRNA expression in mouse embryonic stem cells, we find that let-7c promotes cardiomyogenesis by upregulating genes involved in mesoderm specification (T/Bra and Nodal) and cardiac differentiation (Mesp1, Nkx2.5 and Tbx5). The action of let-7c is restricted to the early phase of mesoderm formation at the expense of endoderm and its late activation redirects cells toward other mesodermal derivatives. The Polycomb complex group protein Ezh2 is a direct target of let-7c, which promotes cardiac differentiation by modifying the H3K27me3 marks from the promoters of crucial cardiac transcription factors (Nkx2.5, Mef2c, Tbx5). In contrast, miR-99a represses cardiac differentiation via the nucleosome-remodeling factor Smarca5, attenuating the Nodal/Smad2 signaling. We demonstrated that the identified targets are underexpressed in human Down syndrome fetal heart specimens. By perturbing the expression levels of these miRNAs in embryonic stem cells, we were able to demonstrate that these miRNAs control lineage- and stage-specific transcription factors, working in concert with chromatin modifiers to direct cardiomyogenesis

    Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts

    No full text
    MicroRNAs (miRNAs) are regulatory noncoding RNAs that affect the production of a significant fraction of human mRNAs via post-transcriptional regulation. Interindividual variation of the miRNA expression levels is likely to influence the expression of miRNA target genes and may therefore contribute to phenotypic differences in humans, including susceptibility to common disorders. The extent to which miRNA levels are genetically controlled is largely unknown. In this report, we assayed the expression levels of miRNAs in primary fibroblasts from 180 European newborns of the GenCord project and performed association analysis to identify eQTLs (expression quantitative traits loci). We detected robust expression for 121 miRNAs out of 365 interrogated. We have identified significant cis- (10%) and trans- (11%) eQTLs. Furthermore, we detected one genomic locus (rs1522653) that influences the expression levels of five miRNAs, thus unraveling a novel mechanism for coregulation of miRNA expression

    Common regulatory variation impacts gene expression in a cell type-dependent manner

    No full text
    Studies correlating genetic variation to gene expression facilitate the interpretation of common human phenotypes and disease. As functional variants may be operating in a tissue-dependent manner, we performed gene expression profiling and association with genetic variants (single-nucleotide polymorphisms) on three cell types of 75 individuals. We detected cell type-specific genetic effects, with 69 to 80% of regulatory variants operating in a cell type-specific manner, and identified multiple expressive quantitative trait loci (eQTLs) per gene, unique or shared among cell types and positively correlated with the number of transcripts per gene. Cell type-specific eQTLs were found at larger distances from genes and at lower effect size, similar to known enhancers. These data suggest that the complete regulatory variant repertoire can only be uncovered in the context of cell-type specificity

    Extensive Natural Variation for Cellular Hydrogen Peroxide Release Is Genetically Controlled

    Get PDF
    Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H2O2 release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H2O2 release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (

    Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele

    No full text
    Omphalocele is a congenital birth defect characterised by the presence of internal organs located outside of the ventral abdominal wall. The purpose of this study was to identify the underlying genetic mechanisms of a large autosomal dominant Caucasian family with omphalocele
    corecore