5 research outputs found

    Exposure to ambient particulate matter is associated with accelerated functional decline in idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF), a progressive disease with an unknown pathogenesis, may be due in part to an abnormal response to injurious stimuli by alveolar epithelial cells. Air pollution and particulate inhalation of matter evoke a wide variety of pulmonary and systemic inflammatory diseases. We therefore hypothesized that increased average ambient particulate matter (PM) concentrations would be associated with an accelerated rate of decline in FVC in IPF. METHODS: We identified a cohort of subjects seen at a single university referral center from 2007 to 2013. Average concentrations of particulate matter < 10 and < 2.5 μg/m3 (PM10 and PM2.5, respectively) were assigned to each patient based on geocoded residential addresses. A linear multivariable mixed-effects model determined the association between the rate of decline in FVC and average PM concentration, controlling for baseline FVC at first measurement and other covariates. RESULTS: One hundred thirty-five subjects were included in the final analysis after exclusion of subjects missing repeated spirometry measurements and those for whom exposure data were not available. There was a significant association between PM10 levels and the rate of decline in FVC during the study period, with each μg/m3 increase in PM10 corresponding with an additional 46 cc/y decline in FVC (P = .008). CONCLUSIONS: Ambient air pollution, as measured by average PM10 concentration, is associated with an increase in the rate of decline of FVC in IPF, suggesting a potential mechanistic role for air pollution in the progression of disease

    Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowRationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (n = 3,624) and control subjects (n = 4,442) across genes and regions previously associated with disease. We tested for associations between disease and 1) individual common variants via logistic regression and 2) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% confidence interval, 4.91-6.06) for one copy of the risk allele and 18.68 (95% confidence interval, 13.34-26.17) for two copies of the risk allele (P = 9.60 × 10-295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence.National Center for Research Resources National Heart, Lung, and Blood Institut
    corecore