6 research outputs found

    On The Doppler Velocity of Emission Line Profiles Formed in the "Coronal Contraflow" that is the Chromosphere-Corona Mass Cycle

    Full text link
    This analysis begins to explore the complex chromosphere-corona mass cycle using a blend of imaging and spectroscopic diagnostics. Single Gaussian fits to hot emission line profiles (formed above 1MK) at the base of coronal loop structures indicate material blue-shifts of 5-10km/s while cool emission line profiles (formed below 1MK) yield red-shifts of a similar magnitude - indicating, to zeroth order, that a temperature-dependent bifurcating flow exists on coronal structures. Image sequences of the same region reveal weakly emitting upward propagating disturbances in both hot and cool emission with apparent speeds of 50-150km/s. Spectroscopic observations indicate that these propagating disturbances produce a weak emission component in the blue wing at commensurate speed, but that they contribute only a few percent to the (ensemble) emission line profile in a single spatio-temporal resolution element. Subsequent analysis of imaging data shows material "draining" slowly (~10km/s) out of the corona, but only in the cooler passbands. We interpret the draining as the return-flow of coronal material at the end of the complex chromosphere-corona mass cycle. Further, we suggest that the efficient radiative cooling of the draining material produces a significant contribution to the red wing of cool emission lines that is ultimately responsible for their systematic red-shift as derived from a single Gaussian fit when compared to those formed in hotter (conductively dominated) domains. The presence of counter-streaming flows complicates the line profiles, their interpretation, and asymmetry diagnoses, but allows a different physical picture of the lower corona to develop.Comment: 7 pages, 5 color figures. Accepted to Appear Ap

    Two components of the coronal emission revealed by EUV spectroscopic observations

    Full text link
    Recent spectroscopic observations have revealed the ubiquitous presence of blueward asymmetries of emission lines formed in the solar corona and transition region. These asymmetries are most prominent in loop footpoint regions, where a clear correlation of the asymmetry with the Doppler shift and line width determined from the single Gaussian fit is found. Such asymmetries suggest at least two emission components: a primary component accounting for the background emission and a secondary component associated with high-speed upflows. The latter has been proposed to play a vital role in the coronal heating process and there is no agreement on its properties. Here we slightly modify the initially developed technique of Red-Blue (RB) asymmetry analysis and apply it to both artificial spectra and spectra observed by the EUV Imaging Spectrometer onboard Hinode, and demonstrate that the secondary component usually contributes a few percent of the total emission, has a velocity ranging from 50 to 150 km s-1 and a Gaussian width comparable to that of the primary one in loop footpoint regions. The results of the RB asymmetry analysis are then used to guide a double Gaussian fit and we find that the obtained properties of the secondary component are generally consistent with those obtained from the RB asymmetry analysis. Through a comparison of the location, relative intensity, and velocity distribution of the blueward secondary component with the properties of the upward propagating disturbances revealed in simultaneous images from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, we find a clear association of the secondary component with the propagating disturbances.Comment: 19 figures, accepted by Ap

    hsa-miR29b, a critical downstream target of non-canonical Wnt signaling, plays an anti-proliferative role in non-small cell lung cancer cells via targeting MDM2 expression

    Get PDF
    Summary In non-small cell lung cancer cell lines, activation of β-catenin independent signaling, via Wnt7a/Frizzled9 signaling, leads to reversal of cellular transformation, reduced anchorage-independent growth and induction of epithelial differentiation. miRNA expression profiling on a human lung adenocarcinoma cell line (A549) identified hsa-miR29b as an important downstream target of Wnt7a/Frizzled9 signaling. We show herein that hsa-miR29b expression is lost in non-small cell lung cancer (NSCLC) cell lines and stimulation of β-catenin independent signaling, via Wnt7a expression, in NSCLC cell lines results in increased expression of hsa-miR29b. Surprisingly, we also identify specific regulation of hsa-miR29b by Wnt7a but not by Wnt3, a ligand for β-catenin-dependent signaling. Interestingly, knockdown of hsa-miR29b was enough to abrogate the tumor suppressive effects of Wnt7a/Frizzled9 signaling in NSCLC cells, suggesting that hsa-miR29b is an important mediator of β-catenin independent signaling. Finally, we show for the first time that hsa-miR29b plays an important role as a tumor suppressor in lung cancer by targeting murine double mutant 2 (MDM2), revealing novel nodes for Wnt7a/Frizzled9-mediated regulation of NSCLC cell proliferation
    corecore