1,340 research outputs found

    [(3aS,5aR,8aR,8bS)-2,2,7,7-Tetra­methyl­tetra­hydro-3aH-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-3a-yl]methyl (R)-N-(1-phenyl­eth­yl)sulfamate

    Get PDF
    In the title compound, C20H29NO8S, the two five-membered rings adopt envelope conformations (with an O atom at the flap in each case), while the six-membered pyran ring displays a twist-boat conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a supra­molecular chain running along the a axis

    Stereochemical studies on protonated bridgehead amines. ^1H NMR determination of cis and trans B-C ring-fused structures for salts of hexahydropyrrolo [2,1-a] isoquinolines and related C ring homologs. Capture of unstable ring-fused structures in the solid state

    Get PDF
    Acid-addition salts of tricyclic isoquinolines 2a/b, 3a/b, 4a-4c, 5, 6a/b, 7, 8a/b, 9a/b, and 17a/b were studied by high-field ^1H NMR in CDCl_3 solution. Cis (e.g., 14 and 15 in Figure 1) and trans (e.g., 13)B-C ring-fused structures were identified by using the vicinal ^3J(CH-NH) coupling constants, which demonstrate a Karplus-like behavior. In some cases, we initially observed a trans form, which converted to a cis A form by N H proton exchange. For 4c.HBr, the exchange process was slowed by addition of trifluoroacetic acid. In many cases, cis A and cis B structures were preferred in solution. The pendant phenyl group exerted a strong influence on the preferred solution structure. Observation of the initial, unstable trans-fused structures was related to their capture in the solid state and release intact on dissolution. X-ray diffraction was performed on the HBr salts of 2a (B-C cis), 2b (B-C cis), and 4c (B-C trans). The result for 4c.HBr confirmed the connection between the initial trans form in solution and the solid state. For 17b.HCI two conformers, associated with hindered rotation about the bond connecting the 2,6-disubstituted phenyl group to the tricyclic array, were detected at ambient probe temperature; however, rotamers were not observed for either of the two forms (trans and cis A) of 17a.HBr. Two conformers were also found for 16b.HBr. Temperature-dependent behavior was recorded in the ^1H NMR spectra of 17b.HBr and 16b.HBr; the activation free energy for interconversion of conformers was estimated to be in the vicinity of 17 kcal/mol for the former and 14-15 kcal/mol for the latter. The ^1H NMR spectrum of butaclamol hydrochloride (20.HC1), a potent neuroleptic agent, in Me_2SO-d_6 revealed two species in a ratio of 81:19, which were assigned as trans and cis A forms, respectively. ^1H NMR data for various free bases are also presented and discussed. Empirical force field calculations on three model hydrocarbons are discussed from a perspective of finding an explanation for the configurational/conformational behavior of the bridgehead ammonium salts. Diverse literature examples of structures for protonated bridgehead amines are also discussed. A tentative rationale is suggested for the preference of cis A forms in some protonated tetrahydroisoquinoline derivatives

    4-Bromo-4′-(dimethyl­amino)stilbene

    Get PDF
    In the title compound, C16H16BrN, the benzene rings are inclined to each other with a dihedral angle between their mean planes of 50.5 (3)° and the C=C bond adopts a cis conformation

    1-(4-Chloro­phen­yl)-3-(2,4-dichloro­benzo­yl)thio­urea

    Get PDF
    The title compound, C14H9Cl3N2OS, has bond lengths and angles which are quite typical for thio­urea compounds of this class. The mol­ecule exists in the solid state in its thione form with typical thio­urea C=S and C=O bond lengths, as well as shortened C—N bonds. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. Inter­molecular N—H⋯S hydrogen bonds link the mol­ecules to form centrosymmetric dimers

    1-(2-Chloro-5-nitro­phen­yl)-3-(2,2-di­methyl­propion­yl)thio­urea

    Get PDF
    With the exception of the C atoms of two of the methyl groups of the tert-butyl substituent, all of the non-H atoms of the title compound, C12H14ClN3O3S, lie on a mirror plane. The 2-chloro-5-nitro­phenyl and 2,2-dimethyl­propionyl substituents are, respectively, cis and trans relative to the thio­carbonyl S atom across the two C—N bonds. Intra­molecular N—H⋯O and C—H⋯S hydrogen bonds form S(6) ring motifs, also in the mirror plane. Despite the presence of two N—H subsituents, no inter­molecular hydrogen bonds are observed in the crystal structure. Weak π–π contacts [centroid–centroid distances of 4.2903 (17) Å] involving adjacent aromatic rings link the mol­ecules in a head-to-tail fashion above and below the mol­ecular plane

    Chemoenzymatic Approach to Tetrodotoxin: Synthesis of Fukuyama’s, Alonso’s, and Sato’s Advanced Intermediates

    Get PDF
    The advanced intermediates in the syntheses of tetrodotoxin reported by Fukuyama, Alonso, and Sato were prepared. The key steps in the synthesis of the title compounds involved the toluene dioxygenase–mediated dihydroxylation of either iodobenzene or benzyl acetate. The resulting diene diols were transformed to Fukuyama’s intermediate in six steps, to Alonso’s intermediate in nine steps and to Sato’s intermediate in ten steps, respectively.NSERC Idea to Innovation - I2IPJ-470630-14 NSERC Discovery Grant - RGPIN-2018-0372

    Practical First Total Synthesis of the Potent Phytotoxic (±)-Naphthotectone, Isolated from Tectona grandis

    Get PDF
    Naphthotectone is a quinone isolated recently from teak extracts of Tectona grandis. It has been shown to be one of the most abundant compounds and the most active compound isolated form teak. Thus, it has been proposed that naphthotectone is one of the compounds responsible for the allelophathic activity of this plant. An efficient total synthesis of (±) -naphthotectone was achieved in seven steps and 31% overall yield. The best results were obtained by using an aqueous Wittig reaction as a key step. Other reactions used were the formation of an epoxide ring by the Corey– Chaykovsky method, and an innovative one-pot anodic electrooxidation and demethylation

    Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways

    Get PDF
    The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies

    Synthesis, Characterization, and Biological Evaluation of Benzimidazole Derivatives as Potential Anxiolytics

    Get PDF
    The synthesized benzimidazoles compounds were prepared from the condensation reaction between o-Phenylenediamine and various carbonyl compounds, in the presence of ammonium chloride as a catalyst. Ammonium chloride is a commercial and environmentally benign catalyst. The yield of all benzimidazole derivatives was found to be in the range of 75 – 94%. The purity of the compounds was ascertained by melting point and TLC. The synthesized compounds were characterized by using IR,1H NMR, and MASS spectral data together with elemental analysis. The synthesized benzimidazole compounds were screened for acute and chronic anti-anxiety activity in Wistar rats by using an elevated plus maze model with standard Diazepam. The synthesized compounds ZB, ZE, ZF, ZG, and ZH showed potent anti-anxiety activity when compared to the standard Diazepam. The compound ZH exhibited a higher anti-anxiety activity when compared to other prepared benzimidazoles. The results were subjected to statistical analysis by using one-way ANOVA followed by the Tukey-Kramer test, to calculate the significance
    corecore