16 research outputs found

    Quantitative and Molecular Genetic Analyses of Mutations Increasing Drosophila Life Span

    Get PDF
    Understanding the genetic and environmental factors that affect variation in life span and senescence is of major interest for human health and evolutionary biology. Multiple mechanisms affect longevity, many of which are conserved across species, but the genetic networks underlying each mechanism and cross-talk between networks are unknown. We report the results of a screen for mutations affecting Drosophila life span. One third of the 1,332 homozygous P–element insertion lines assessed had quantitative effects on life span; mutations reducing life span were twice as common as mutations increasing life span. We confirmed 58 mutations with increased longevity, only one of which is in a gene previously associated with life span. The effects of the mutations increasing life span were highly sex-specific, with a trend towards opposite effects in males and females. Mutations in the same gene were associated with both increased and decreased life span, depending on the location and orientation of the P–element insertion, and genetic background. We observed substantial—and sex-specific—epistasis among a sample of ten mutations with increased life span. All mutations increasing life span had at least one deleterious pleiotropic effect on stress resistance or general health, with different patterns of pleiotropy for males and females. Whole-genome transcript profiles of seven of the mutant lines and the wild type revealed 4,488 differentially expressed transcripts, 553 of which were common to four or more of the mutant lines, which include genes previously associated with life span and novel genes implicated by this study. Therefore longevity has a large mutational target size; genes affecting life span have variable allelic effects; alleles affecting life span exhibit antagonistic pleiotropy and form epistatic networks; and sex-specific mutational effects are ubiquitous. Comparison of transcript profiles of long-lived mutations and the control line reveals a transcriptional signature of increased life span

    The fecal microbiota of healthy donor horses and geriatric recipients undergoing fecal microbial transplantation for the treatment of diarrhea.

    No full text
    Background and aimsFecal microbial transplantation (FMT), a treatment for certain gastrointestinal conditions associated with dysbiosis in people, is also empirically employed in horses with colitis. This study used microbiota high-throughput sequencing to compare the fecal microbial profile of healthy horses to that of geriatric microbial transplant recipients experiencing diarrhea and tested whether FMT restores microbiota diversity.MethodsTo evaluate the effect of environment and donor characteristics on the intestinal microbiota, fecal samples were collected per rectum from 15 healthy young-adult (2-12 years) and 15 geriatric (≥20 years) horses. Additionally, FMT was performed for 3 consecutive days in 5 geriatric horses with diarrhea using feces from the same healthy donor. Fecal samples were collected from both donor and recipient prior to each FMT and from recipients 24 hours following the last FMT. The profile of the fecal bacterial microbiota was compared using 16S amplicon sequencing.Results and conclusionsIn contrast to diet and farm location, age did not significantly affect the healthy equine fecal microbiota, indicating that both healthy geriatric and young-adult horses may serve as FMT donors. The fecal microbiota of horses with diarrhea was significantly more variable in terms of β-diversity than that of healthy horses. An inverse correlation between diarrhea score and relative abundance of Verrucomicrobia was identified in surviving FMT recipients. At study completion, the fecal microbiota of horses which responded to FMT had a higher α-diversity than prior to treatment and was phylogenetically more similar to that of the donor

    Default variability: The coronal-velar relationship

    No full text

    Prosodic identity in copy epenthesis

    No full text

    The Genomic Basis of Postponed Senescence in Drosophila melanogaster

    No full text

    Annuaire 2004-2005

    No full text
    corecore