187 research outputs found

    Update to the study protocol for an implementation-effectiveness trial comparing two education strategies for improving the uptake of noninvasive ventilation in patients with severe COPD exacerbation

    Get PDF
    BACKGROUND: There is strong evidence that noninvasive ventilation (NIV) improves the outcomes of patients hospitalized with severe COPD exacerbation, and NIV is recommended as the first-line therapy for these patients. Yet, several studies have demonstrated substantial variation in NIV use across hospitals, leading to preventable morbidity and mortality. In addition, prior studies suggested that efforts to increase NIV use in COPD need to account for the complex and interdisciplinary nature of NIV delivery and the need for team coordination. Therefore, our initial project aimed to compare two educational strategies: online education (OLE) and interprofessional education (IPE), which targets complex team-based care in NIV delivery. Due to the impact of the COVID-19 pandemic on recruitment and planned intervention, we had made several changes in the study design, statistical analysis, and implementation strategies delivery as outlined in the methods. METHODS: We originally proposed a two-arm, pragmatic, cluster, randomized hybrid implementation-effectiveness trial comparing two education strategies to improve NIV uptake in patients with severe COPD exacerbation in 20 hospitals with a low baseline rate of NIV use. Due to logistical constrains and slow recruitment, we changed the study design to an opened cohort stepped-wedge design with three steps which will allow the institutions to enroll when they are ready to participate. Only the IPE strategy will be implemented, and the education will be provided in an online virtual format. Our primary outcome will be the hospital-level risk-standardized NIV proportion for the period post-IPE training, along with the change in rate from the period prior to training. Aim 1 will compare the change over time of NIV use among patients with COPD in the step-wedged design. Aim 2 will explore the mediators\u27 role (respiratory therapist autonomy and team functionality) on the relationship between the implementation strategies and effectiveness. Finally, in Aim 3, through interviews with providers, we will assess the acceptability and feasibility of the educational training. CONCLUSION: The changes in study design will result in several limitation. Most importantly, the hospitals in the three cohorts are not randomized as they enroll based on their readiness. Second, the delivery of the IPE is virtual, and it is not known if remote education is conducive to team building. However, this study will be among the first to test the impact of IPE in the inpatient setting carefully and may generalize to other interventions directed to seriously ill patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04206735 . Registered on December 20, 2019

    Bioactivation of isoxazole-containing bromodomain and extra-terminal domain (BET) inhibitors

    Get PDF
    The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD\u27s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads

    Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding

    Get PDF
    In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3–4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg−1·min−1) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg−1·min−1 in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe

    A model for improving microbial biofuel production using a synthetic feedback loop

    Get PDF
    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates

    Collaborative research between clinicians and researchers: a multiple case study of implementation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bottom-up, clinician-conceived and directed clinical intervention research, coupled with collaboration from researcher experts, is conceptually endorsed by the participatory research movement. This report presents the findings of an evaluation of a program in the Veterans Health Administration meant to encourage clinician-driven research by providing resources believed to be critical. The evaluation focused on the extent to which funded projects: maintained integrity to their original proposals; were methodologically rigorous; were characterized by collaboration between partners; and resulted in sustained clinical impact.</p> <p>Methods</p> <p>Researchers used quantitative (survey and archival) and qualitative (focus group) data to evaluate the implementation, evaluation, and sustainability of four clinical demonstration projects at four sites. Fourteen research center mentors and seventeen clinician researchers evaluated the level of collaboration using a six-dimensional model of participatory research.</p> <p>Results</p> <p>Results yielded mixed findings. Qualitative and quantitative data suggested that although the process was collaborative, clinicians' prior research experience was critical to the quality of the projects. Several challenges were common across sites, including subject recruitment, administrative support and logistics, and subsequent dissemination. Only one intervention achieved lasting clinical effect beyond the active project period. Qualitative analyses identified barriers and facilitators and suggested areas to improve sustainability.</p> <p>Conclusions</p> <p>Evaluation results suggest that this participatory research venture was successful in achieving clinician-directed collaboration, but did not produce sustainable interventions due to such implementation problems as lack of resources and administrative support.</p

    Indices of insulin sensitivity and secretion from a standard liquid meal test in subjects with type 2 diabetes, impaired or normal fasting glucose

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To provide an initial evaluation of insulin sensitivity and secretion indices derived from a standard liquid meal tolerance test protocol in subjects with normal (NFG), impaired fasting glucose (IFG) or type 2 diabetes mellitus.</p> <p>Methods</p> <p>Areas under the curve (AUC) for glucose, insulin and C-peptide from pre-meal to 120 min after consumption of a liquid meal were calculated, as were homeostasis model assessments of insulin resistance (HOMA2-IR) and the Matsuda index of insulin sensitivity.</p> <p>Results</p> <p>Subjects with NFG (n = 19), IFG (n = 19), and diabetes (n = 35) had mean ± SEM HOMA2-IR values of 1.0 ± 0.1, 1.6 ± 0.2 and 2.5 ± 0.3 and Matsuda insulin sensitivity index values of 15.6 ± 2.0, 8.8 ± 1.2 and 6.0 ± 0.6, respectively. The log-transformed values for these variables were highly correlated overall and within each fasting glucose category (r = -0.91 to -0.94, all p < 0.001). Values for the product of the insulin/glucose AUC ratio and the Matsuda index, an indicator of the ability of the pancreas to match insulin secretion to the degree of insulin resistance, were 995.6 ± 80.7 (NFG), 684.0 ± 57.3 (IFG) and 188.3 ± 16.1 (diabetes) and discriminated significantly between fasting glucose categories (p < 0.001 for each comparison).</p> <p>Conclusion</p> <p>These results provide initial evidence to support the usefulness of a standard liquid meal tolerance test for evaluation of insulin secretion and sensitivity in clinical and population studies.</p

    The Mixed-Lineage Kinase DLK Is a Key Regulator of 3T3-L1 Adipocyte Differentiation

    Get PDF
    The mixed-lineage kinase (MLK) family member DLK has been proposed to serve as a regulator of differentiation in various cell types; however, its role in adipogenesis has not been investigated. In this study, we used the 3T3-L1 preadipocyte cell line as a model to examine the function of DLK in adipocyte differentiation.Immunoblot analyses and kinase assays performed on 3T3-L1 cells showed that the expression and activity of DLK substantially increase as differentiation occurs. Interestingly, DLK appears crucial for differentiation since its depletion by RNA interference impairs lipid accumulation as well as expression of the master regulators of adipogenesis C/EBPalpha and PPARgamma2 at both the mRNA and protein levels. In contrast, neither the expression nor the DNA binding activity of C/EBPbeta, an activator for C/EBPalpha and PPARgamma, is affected by DLK loss.Taken together, these results suggest that DLK is important for expression of mature adipocyte markers and that its action most likely takes place via regulation of C/EBPbeta transcriptional activity and/or initiation of C/EBPalpha and PPARgamma2 gene transcription
    corecore