10 research outputs found

    Expression and function of Dlx genes in the osteoblast lineage

    Get PDF
    AbstractOur laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5−/−/Dlx6−/− mice have more severe craniofacial and limb defects than Dlx5−/−, some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5−/− mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function

    Generation and Characterization of Col10a1 -mCherry Reporter Mice

    Get PDF
    We report here on the generation of a new fluorescent protein reporter transgenic mouse line, Col10a1 -mCherry, which can be used as a tool to study chondrocyte biology and pathology. Collagen, Type X, alpha 1(Col10a1) is highly expressed in hypertrophic chondrocytes and commonly used as a gene marker for this cell population. TheCol10a1-mCherry reporter line was generated using a bacterial recombination strategy with the mouse BAC clone RP23-192A7. To aid in the characterization of this animal model, we intercrossed Col10a1-mCherry mice with Collagen, Type II, alpha 1 (Col2a1) enhanced cyan fluorescent protein (ECFP) reporter mice and characterized the expression of both chondrocyte reporters during embryonic skeletal development from days E10.5 to E17.5. Additionally, at postnatal day 0, Col10a1-mCherry reporter expression was compared to endogenous Col10a1 mRNA expression in long bones and revealed that mCherry fluorescence extended past the Col10a1 expression domain. However, in situ hybridization for mCherry was consistent with the zone of Col10a1 mRNA expression, indicating that the persistent detection of mCherry fluorescence was a result of the long protein half life of mCherry in conjunction with a very rapid phase of skeletal growth and not due to aberrant transcriptional regulation. Taking advantage of the continued fluorescence of hypertrophic chondrocytes at the chondro-osseus junction, we intercrossed Col10a1 -mCherry mice with two different Collagen, Type 1, alpha 1, (Col1a1 ) osteoblast reporter mice, pOBCol3.6-Topaz and pOBCol2.3-Emerald to investigate the possibility that hypertrophic chondrocytes transdifferentiate into osteoblasts. Evaluation of long bones at birth suggests that residual hypertrophic chondrocytes and osteoblasts in the trabecular zone exist as two completely distinct cell populations

    A Site-Specific Integrated Col2.3GFP Reporter Identifies Osteoblasts Within Mineralized Tissue Formed In Vivo by Human Embryonic Stem Cells.

    Get PDF
    The use of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) for study and treatment of bone diseases or traumatic bone injuries requires efficient protocols to differentiate hESCs/iPSCs into cells with osteogenic potential and the ability to isolate differentiated osteoblasts for analysis. We have used zinc finger nuclease technology to deliver a construct containing the Col2.3 promoter driving GFPemerald to the AAVS1 site (referred to as a “safe harbor” site), in human embryonic stem cells (H9Zn2.3GFP), with the goal of marking the cells that have become differentiated osteoblasts. In teratomas formed using these cells, we identified green fluorescent protein (GFP)-positive cells specifically associated with in vivo bone formation. We also differentiated the cells into a mesenchymal stem cell population with osteogenic potential and implanted them into a mouse calvarial defect model. We observed GFP-positive cells associated with alizarin complexone-labeled newly formed bone surfaces. The cells were alkaline phosphatase-positive, and immunohistochemistry with human specific bone sialoprotein (BSP) antibody indicates that the GFP-positive cells are also associated with the human BSP-containing matrix, demonstrating that the Col2.3GFP construct marks cells in the osteoblast lineage. Single-cell cloning generated a 100% Col2.3GFP-positive cell population, as demonstrated by fluorescence in situ hybridization using a GFP probe. The karyotype was normal, and pluripotency was demonstrated by Tra1-60 immunostaining, pluripotent low density reverse transcription-polymerase chain reaction array and embryoid body formation. These cells will be useful to develop optimal osteogenic differentiation protocols and to isolate osteoblasts from normal and diseased iPSCs for analysis

    Towards deliberative peace: a Habermasian critique of contemporary peace operations

    No full text
    corecore