26 research outputs found

    PIP3 Waves and PTEN Dynamics in the Emergence of Cell Polarity

    Get PDF
    AbstractIn a motile eukaryotic cell, front protrusion and tail retraction are superimposed on each other. To single out mechanisms that result in front to tail or in tail to front transition, we separated the two processes in time using cells that oscillate between a full front and a full tail state. State transitions were visualized by total internal reflection fluorescence microscopy using as a front marker PIP3 (phosphatidylinositol [3,4,5] tris-phosphate), and as a tail marker the tumor-suppressor PTEN (phosphatase tensin homolog) that degrades PIP3. Negative fluctuations in the PTEN layer of the membrane gated a local increase in PIP3. In a subset of areas lacking PTEN (PTEN holes), PIP3 was amplified until a propagated wave was initiated. Wave propagation implies that a PIP3 signal is transmitted by a self-sustained process, such that the temporal and spatial profiles of the signal are maintained during passage of the wave across the entire expanse of the cell membrane. Actin clusters were remodeled into a ring along the perimeter of the expanding PIP3 wave. The reverse transition of PIP3 to PTEN was linked to the previous site of wave initiation: where PIP3 decayed first, the entry of PTEN was primed

    Puntos de inflexión en los gradientes de composición de las comunidades de plantas acuáticas de diferentes continentes

    Get PDF
    Unravelling patterns and mechanisms of biogeographical transitions is crucial if we are to understand compositional gradients at large spatial extents, but no studies have thus far examined breakpoints in community composition of freshwater plants across continents. Using a dataset of almost 500 observations of lake plant community composition from six continents, we examined, for the first time, if such breakpoints in geographical space exist for freshwater plants and how well a suite of ecological factors (including climatic and local environmental variables) can explain transitions in community composition from the subtropics to the poles. Our combination of multivariate regression tree (MRT) analysis and k-means partitioning suggests that the most abrupt breakpoint exists between temperate to boreal regions on the one hand and freshwater plant communities harbouring mainly subtropical or Mediterranean assemblages on the other. The spatially structured variation in current climatic conditions is the most likely candidate for controlling these latitudinal patterns, although one cannot rule out joint effects of eco-evolutionary constraints in the harsher high-latitude environments and post-glacial migration lags after Pleistocene Ice Ages. Overall, our study supports the foundations of global regionalisation for freshwater plants and anticipates further biogeographical research on freshwater plant communities once datasets have been harmonised for conducting large-scale spatial analyses.publishedVersio

    Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude

    Get PDF
    Aim: We studied global variation in beta diversity patterns of lake macrophytes using regional data from across the world. Specifically, we examined 1) how beta diversity of aquatic macrophytes is partitioned between species turnover and nestedness within each study region, and 2) which environmental characteristics structure variation in these beta diversity components.  Location: Global  Methods: We used presence-absence data for aquatic macrophytes from 21 regions distributed around the world. We calculated pairwise-site and multiple-site beta diversity among lakes within each region using Sørensen dissimilarity index and partitioned it into turnover and nestedness coefficients. Beta regression was used to correlate the diversity coefficients with regional environmental characteristics. Results: Aquatic macrophytes showed different levels of beta diversity within each of the 21 study regions, with species turnover typically accounting for the majority of beta diversity, especially in high-diversity regions. However, nestedness contributed 30-50% of total variation in macrophyte beta diversity in low-diversity regions. The most important environmental factor explaining the three beta diversity coefficients (total, species turnover and nestedness) was altitudinal range, followed by relative areal extent of freshwater, latitude and water alkalinity range. Main conclusions: Our findings show that global patterns in beta diversity of lake macrophytes are caused by species turnover rather than by nestedness. These patterns in beta diversity were driven by natural environmental heterogeneity, notably variability in altitudinal range (also related to temperature variation) among regions. In addition, a greater range in alkalinity within a region, likely amplified by human activities, was also correlated with increased macrophyte beta diversity. These findings suggest that efforts to conserve aquatic macrophyte diversity should primarily focus on regions with large numbers of lakes that exhibit broad environmental gradients.

    Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile <it>Dictyostelium </it>cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate. To study de-novo cell polarization, we first depolymerized actin and subsequently recorded the spontaneous reorganization of actin patterns in relation to PTEN.</p> <p>Results</p> <p>In a transient stage of recovery from depolymerization, symmetric actin patterns alternate periodically with asymmetric ones. The switches to asymmetry coincide with the unilateral membrane-binding of PTEN. The modes of state transitions in the actin and PTEN systems differ. Transitions in the actin system propagate as waves that are initiated at single sites by the amplification of spontaneous fluctuations. In PTEN-null cells, these waves still propagate with normal speed but loose their regular periodicity. Membrane-binding of PTEN is induced at the border of a coherent PTEN-rich area in the form of expanding and regressing gradients.</p> <p>Conclusions</p> <p>The state transitions in actin organization and the reversible transition from cytoplasmic to membrane-bound PTEN are synchronized but their patterns differ. The transitions in actin organization are independent of PTEN, but when PTEN is present, they are coupled to periodic changes in the membrane-binding of this PIP3-degrading phosphatase. The PTEN oscillations are related to motility patterns of chemotaxing cells.</p

    Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis

    No full text
    Calreticulin and calnexin are Ca(2+)-binding proteins with chaperone activity in the endoplasmic reticulum. These proteins have been eliminated by gene replacement in Dictyostelium, the only microorganism known to harbor both proteins; family members in Dictyostelium are located at the base of phylogenetic trees. A dramatic decline in the rate of phagocytosis was observed in double mutants lacking calreticulin and calnexin, whereas only mild changes occurred in single mutants. Dictyostelium cells are professional phagocytes, capable of internalizing particles by a sequence of activities: adhesion of the particle to the cell surface, actin-dependent outgrowth of a phagocytic cup, and separation of the phagosome from the plasma membrane. In the double-null mutants, particles still adhered to the cell surface, but the outgrowth of phagocytic cups was compromised. Green fluorescent protein-tagged calreticulin and calnexin, expressed in wild-type cells, revealed a direct link of the endoplasmic reticulum to the phagocytic cup enclosing a particle, such that the Ca(2+) storage capacity of calreticulin and calnexin might directly modulate activities of the actin system during particle uptake

    Unilateral Cleavage Furrows in Multinucleate Cells

    No full text
    Multinucleate cells can be produced in Dictyostelium by electric pulse-induced fusion. In these cells, unilateral cleavage furrows are formed at spaces between areas that are controlled by aster microtubules. A peculiarity of unilateral cleavage furrows is their propensity to join laterally with other furrows into rings to form constrictions. This means cytokinesis is biphasic in multinucleate cells, the final abscission of daughter cells being independent of the initial direction of furrow progression. Myosin-II and the actin filament cross-linking protein cortexillin accumulate in unilateral furrows, as they do in the normal cleavage furrows of mononucleate cells. In a myosin-II-null background, multinucleate or mononucleate cells were produced by cultivation either in suspension or on an adhesive substrate. Myosin-II is not essential for cytokinesis either in mononucleate or in multinucleate cells but stabilizes and confines the position of the cleavage furrows. In fused wild-type cells, unilateral furrows ingress with an average velocity of 1.7 &micro;m &times; min&minus;1, with no appreciable decrease of velocity in the course of ingression. In multinucleate myosin-II-null cells, some of the furrows stop growing, thus leaving space for the extensive broadening of the few remaining furrows

    Self-organizing actin waves as planar phagocytic cup structures

    No full text
    Actin waves that travel on the planar membrane of a substrate-attached cell underscore the capability of the actin system to assemble into dynamic structures by the recruitment of proteins from the cytoplasm. The waves have no fixed shape, can reverse their direction of propagation and can fuse or divide. Actin waves separate two phases of the plasma membrane that are distinguished by their lipid composition. The area circumscribed by a wave resembles in its phosphoinositide content the interior of a phagocytic cup, leading us to explore the possibility that actin waves are in-plane phagocytic structures generated without the localized stimulus of an attached particle. Consistent with this view, wave-forming cells were found to exhibit a high propensity for taking up particles. Cells fed rod-shaped particles produced elongated phagocytic cups that displayed a zonal pattern that reflected in detail the actin and lipid pattern of free-running actin waves. Neutrophils and macrophages are known to spread on surfaces decorated with immune complexes, a process that has been interpreted as “frustrated” phagocytosis. We suggest that actin waves enable a phagocyte to scan a surface for particles that might be engulfed

    Compositional breakpoints of freshwater plant communities across continents

    Get PDF
    Unravelling patterns and mechanisms of biogeographical transitions is crucial if we are to understand compositional gradients at large spatial extents, but no studies have thus far examined breakpoints in community composition of freshwater plants across continents. Using a dataset of almost 500 observations of lake plant community composition from six continents, we examined, for the first time, if such breakpoints in geographical space exist for freshwater plants and how well a suite of ecological factors (including climatic and local environmental variables) can explain transitions in community composition from the subtropics to the poles. Our combination of multivariate regression tree (MRT) analysis and k-means partitioning suggests that the most abrupt breakpoint exists between temperate to boreal regions on the one hand and freshwater plant communities harbouring mainly subtropical or Mediterranean assemblages on the other. The spatially structured variation in current climatic conditions is the most likely candidate for controlling these latitudinal patterns, although one cannot rule out joint effects of eco-evolutiona-ry constraints in the harsher high-latitude environments and post-glacial migration lags after Pleistocene Ice Ages. Overall, our study supports the foundations of global regionalisation for freshwater plants and anticipates further biogeographical research on freshwater plant communities once datasets have been harmonised for conducting large-scale spatial analyses
    corecore