43 research outputs found
Letter from Rob[er]t & Mary Catlin to John Muir, 1903 Mar 2.
accept the warm thanks ofyours friends from afarRobt CatlinMary L. Catlin1428 Euclid PlaceWashington D.C.March second 1903Mar 2, 1903My dear Mr MuirMy husband, Captain Robert Catlin received the book and autograph letter you sent him, this morning and as, an attack of Paralysis has made it difficult for him to write, he has deputed me to act as his most willing amanuensis and I take this opportunity03174 to add my thanks to his for your great kindness.It has increased the debt of gratitude we already owed to you for giving us the great pleasure of being your travelling companions through so many beautiful lands, we have climbed with you the heaven kissing hills traversed glaciers and rested under the giant Sequoias and you have brought into sick rooms the [fresh?] m[illegible]ating a[illegible] of nature which stimulates the mind and through it, the stricken body. I shall also thank our dear Mrs. Bidwell for her kindness and hope you wil
Effectiveness and Feasibility of In-office versus Smartphone Text-delivered Nutrition Education in the College Setting: A Mixed-methods Pilot Study
Often, being away from home for the first time, coupled with limited knowledge regarding healthy eating behaviors, leads to poor food choices and an increased risk of obesity among college-aged young adults. These college students are prone to high-calorie diets and limited physical activity, putting them at risk for obesity, a physiologically, psychologically, and financially costly epidemic in the United States. College students use their cellular phones over eight and a half hours a day and cell phones are their primary means of information consumption outside of the classroom, suggesting that the phones would be a useful tool to provide nutrition education to this at-risk population.
This mixed-methods randomized-controlled trial took place over eight weeks, between 9/15/15 and 12/2/15. The primary aims of this study were to assess the effectiveness and feasibility between an educational nutrition intervention delivered via smartphone texts and a traditional in-office setting for 18-22-year-old, overweight college students at the Sonoma State University Student Health Center. Using simple randomization, participants were assigned to one of two groups: text, or in-office.
Participants in the in-office group received one-on-one nutrition counseling framed within the social cognitive theory by a registered nurse at the study onset, week two, and week four. Participants in the text group received the same information, broken up into weekly text messages with links to websites, YouTube, and explanations of content. Participant characteristics, including weight, height, and health behaviors (hours of sleep a night, number of fruits and vegetables per day), were assessed at the study onset (T1) and again at week two (T2), week four (T3), and week eight (T4). All participants were invited to take part in an in-depth, qualitative, face-to-face interview at the end of the study (T4).
Nine participants completed both the trial and interviews. Two-thirds (66.7%, n=6) were in the text group, 66.7% (n=6) were female, 33.3% (n=3) were minorities, 66.7% lived on- campus, and 44.4% (n=4) took part in the university’s on-campus meal plan. No statistically significant differences were noted in participant characteristics, or health behaviors between the two groups throughout the study. Although no statistical significance was noted between the two groups with regard to weight change, the text group’s mean weight decreased from 188.25(sd=25.03) pounds to 184.58(sd=24.67) pounds while the in-office group’s mean weight increased from 254.00(sd=90.15) to 257.00(sd=94.14) pounds. Weight loss in the text group should be further evaluated as it may hold clinical significance for effectiveness of the intervention.
Through qualitative interviews exploring participants’ experiences, four major themes emerged. All participants in the text group (n=6) stated that they felt there was a need for their method of education, they felt their method was effective, they would recommend their method, and their health behaviors changed positively. For the in-office group, all participants (n=3) said there was a need for their method of education, 67% (n=2) said it was effective, all would recommend it, and 67% stated that they changed their behaviors.
Both the quantitative and qualitative findings of this study hold clinical significance as to the effectiveness and feasibility of text messages as a means of providing nutrition education in the college setting. Future research with larger sample sizes and a longer-term study are recommended for more statistical power and to determine the long-term benefits of these methods of nutrition education
Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: piping plovers (\u3ci\u3eCharadrius melodus\u3c/i\u3e) and prairie rivers
Background: Many species are distributed as metapopulations in dynamic landscapes, where habitats change through space and time. Individuals locate habitat through dispersal, and the relationship between a species and landscape characteristics can have profound effects on population persistence. Despite the importance of connectivity in dynamic environments, few empirical studies have examined temporal variability in dispersal or its effect on metapopulation dynamics. In response to this knowledge gap, we studied the dispersal, demography, and viability of a metapopulation of an endangered, disturbance-dependent shorebird. We examined three subpopulations of piping plovers (Charadrius melodus) on the lower Platte and Missouri rivers from 2008–2013. High flow events from an upstream dam on the Missouri River in 2010 and 2011 allowed us to assess the effect of total habitat loss and the subsequent creation of new habitat associated with a large disturbance at one ‘natural’ study location. The other two sites within the metapopulation, which were maintained by anthropogenic activities (e.g., mining, development, habitat restoration), were largely unaffected by this disturbance, resulting in a controlled natural experiment.
Results: High flow events were associated with increased emigration, decreased immigration, and decreased survival in the subpopulation that experienced high flows. Following the high flow event, immigration into that subpopulation increased. Dispersal rates among subpopulations were negatively correlated with distance. The metapopulation had a low probability of extinction over 100 years (0 %) under the current disturbance interval and associated dispersal and survival rates. However, persistence depended on relatively stable, human-created habitats, not the dynamic, natural habitat (47.7 % extinction probability for this subpopulation).
Conclusions: We found that functional connectivity, as measured by the rate of dispersal among subpopulations, increased as a result of the high flow event in our study metapopulation. Plovers also increased reproductive output following this event. Although the study metapopulation had a low overall probability of extinction, metapopulation persistence depended on anthropogenically created habitats that provided a small but stable source of nesting habitat and dispersers through time. However, all subpopulations remained small, even if persistent, making them individually vulnerable to extinction through stochastic events. Given the highly dynamic nature of habitat availability in this system, maintaining several subpopulations within the metapopulation and stable sources of habitat will be critical, and this species will likely remain conservation-reliant
Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): e01653, doi:10.1002/ecs2.1653.Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the persistence of metapopulations of early-successional species under both suppressed disturbance regimes and disturbance regimes where climate change has further altered disturbance frequency or scope.Nebraska Environmental Trust
Nebraska State Wildlife Grant Program;
Nebraska Wildlife Conservation Fund;
U.S. Army Corps of Engineers;
U.S. Fish and Wildlife Service (USFWS);
USFWS North Atlantic Landscape Conservation Cooperative;
Virginia Tec
Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): e01653, doi:10.1002/ecs2.1653.Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the persistence of metapopulations of early-successional species under both suppressed disturbance regimes and disturbance regimes where climate change has further altered disturbance frequency or scope.Nebraska Environmental Trust
Nebraska State Wildlife Grant Program;
Nebraska Wildlife Conservation Fund;
U.S. Army Corps of Engineers;
U.S. Fish and Wildlife Service (USFWS);
USFWS North Atlantic Landscape Conservation Cooperative;
Virginia Tec
Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system
Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the persistence of metapopulations of early-successional species under both suppressed disturbance regimes and disturbance regimes where climate change has further altered disturbance frequency or scope
Migratory shorebird adheres to Bergmann’s Rule by responding to environmental conditions through the annual lifecycle
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann’s Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmann’s Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle
Migratory shorebird adheres to Bergmann’s Rule by responding to environmental conditions through the annual lifecycle
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann’s Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmann’s Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle
Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics
The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals
Genome Sequencing Reveals Widespread Virulence Gene Exchange among Human Neisseria Species
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange