13,341 research outputs found

    Winter and summer simulations with the GLAS climate model

    Get PDF
    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations

    Quantum Fluctuations Driven Orientational Disordering: A Finite-Size Scaling Study

    Full text link
    The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-rotor model in the low temperature regime. The phase diagram of the model is first analyzed within the mean-field approximation. This predicts at T=0T=0 a phase transition from the ordered to the disordered state when the strength of quantum fluctuations, characterized by the rotational constant Θ\Theta, exceeds a critical value ΘcMF\Theta_{\rm c}^{MF}. As a function of temperature, mean-field theory predicts a range of values of Θ\Theta where the system develops long-range order upon cooling, but enters again into a disordered state at sufficiently low temperatures (reentrance). The model is further studied by means of path integral Monte Carlo simulations in combination with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a genuine long-range order.Comment: 27 pages, 8 figures, RevTe

    The Extraordinary Infrared Spectrum of NGC 1222 (Mkn 603)

    Full text link
    The infrared spectra of starburst galaxies are dominated by the low-excitation lines of [NeII] and [SIII], and the stellar populations deduced from these spectra appear to lack stars larger than about 35 Msun. The only exceptions to this result until now were low metallicity dwarf galaxies. We report our analysis of the mid-infrared spectra obtained with IRS on Spitzer of the starburst galaxy NGC 1222 (Mkn 603). NGC 1222 is a large spheroidal galaxy with a starburst nucleus that is a compact radio and infrared source, and its infrared emission is dominated by the [NeIII] line. This is the first starburst of solar or near-solar metallicity, known to us, which is dominated by the high-excitation lines and which is a likely host of high mass stars. We model the emission with several different assumptions as to the spatial distibution of the high- and low-excitation lines and find that the upper mass cutoff in this galaxy is 40-100 Msun.Comment: accepted, Astronomical Journal. 29 pp, 4 figures. In replacement version an acknowledgment to NRAO is adde

    Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    Full text link
    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current model for magnetic tunnel junctions that extends the two-current Julliere model by adding an inelastic, spin-independent tunneling contribution. Our analysis gives strong evidence that the observed drastic decrease of the GB-TMR in manganites is caused by an imperfect tunneling barrier.Comment: to be published in Europhys. Lett., 8 pages, 4 figures (included

    Melting of Colloidal Molecular Crystals on Triangular Lattices

    Get PDF
    The phase behavior of a two-dimensional colloidal system subject to a commensurate triangular potential is investigated. We consider the integer number of colloids in each potential minimum as rigid composite objects with effective discrete degrees of freedom. It is shown that there is a rich variety of phases including ``herring bone'' and ``Japanese 6 in 1'' phases. The ensuing phase diagram and phase transitions are analyzed analytically within variational mean-field theory and supplemented by Monte Carlo simulations. Consequences for experiments are discussed.Comment: 10 pages, 4 figure

    Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    Get PDF
    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the FXFX curves for spherical virus particles --- CCMV, TrV, and AdV

    Density-functional study of Cu atoms, monolayers, and coadsorbates on polar ZnO surfaces

    Full text link
    The structure and electronic properties of single Cu atoms, copper monolayers and thin copper films on the polar oxygen and zinc terminated surfaces of ZnO are studied using periodic density-functional calculations. We find that the binding energy of Cu atoms sensitively depends on how charge neutrality of the polar surfaces is achieved. Bonding is very strong if the surfaces are stabilized by an electronic mechanism which leads to partially filled surface bands. As soon as the surface bands are filled (either by partial Cu coverage, by coadsorbates, or by the formation of defects), the binding energy decreases significantly. In this case, values very similar to those found for nonpolar surfaces and for copper on finite ZnO clusters are obtained. Possible implications of these observations concerning the growth mode of copper on polar ZnO surfaces and their importance in catalysis are discussed.Comment: 6 pages with 2 postscript figures embedded. Uses REVTEX and epsf macro
    • …
    corecore