154 research outputs found

    The Works of Stefan George

    Get PDF
    This translation of all the poems in the main body of the work of George extensively revises the first publication of "The Works of Stefan George" which appeared in 1949. The editors have also expanded the volume, adding a number of George's early poems under the collective title "Drawings in Grey", two essays (including the eulogy on Hölderin), and the lyrical drama "The Lady's Praying" along with a commentary by the translators

    Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    Get PDF
    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the FXFX curves for spherical virus particles --- CCMV, TrV, and AdV

    Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    Full text link
    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9+/-0.4 kcal/mol) and longitudinal (14.9+/-1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN*nm^2), support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblie

    Fluctuating nonlinear spring theory:Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra

    Get PDF
    We developed the Fluctuating Nonlinear Spring (FNS) model to describe the dynamics of mechanical deformation of biological particles, such as virus capsids. The theory interprets the force-deformation spectra in terms of the “Hertzian stiffness” (non-linear regime of a particle's small-amplitude deformations), elastic constant (large-amplitude elastic deformations), and force range in which the particle's fracture occurs. The FNS theory enables one to quantify the particles’ elasticity (Young's moduli for Hertzian and bending deformations), and the limits of their strength (critical forces, fracture toughness) and deformability (critical deformations) as well as the probability distributions of these properties, and to calculate the free energy changes for the particle's Hertzian, elastic, and plastic deformations, and eventual fracture. We applied the FNS theory to describe the protein capsids of bacteriophage P22, Human Adenovirus, and Herpes Simplex virus characterized by deformations before fracture that did not exceed 10–19% of their size. These nanoshells are soft (~1–10-GPa elastic modulus), with low ~50–480-kPa toughness – a regime of material behavior that is not well understood, and with the strength increasing while toughness decreases with their size. The particles’ fracture is stochastic, with the average values of critical forces, critical deformations, and fracture toughness comparable with their standard deviations. The FNS theory predicts 0.7-MJ/mol free energy for P22 capsid maturation, and it could be extended to describe uniaxial deformation of cylindrical microtubules and ellipsoidal cellular organelles

    Identification and Characterization of Six Spectroscopically Confirmed Massive Protostructures at 2.5<z<4.52.5<z<4.5

    Full text link
    We present six spectroscopically confirmed massive protostructures, spanning a redshift range of 2.5<z<4.52.5<z<4.5 in the Extended Chandra Deep Field South (ECDFS) field discovered as part of the Charting Cluster Construction in VUDS and ORELSE (C3VO) survey. We identify and characterize these remarkable systems by applying an overdensity measurement technique on an extensive data compilation of public and proprietary spectroscopic and photometric observations in this highly studied extragalactic field. Each of these six protostructures, i.e., a large scale overdensity (volume >9000>9000\thinspace cMpc3^3) of more than 2.5σδ2.5\sigma_{\delta} above the field density levels at these redshifts, have a total mass Mtot1014.8MM_{tot}\ge10^{14.8}M_\odot and one or more highly overdense (overdensity>5σδ\thinspace>5\sigma_{\delta}) peaks. One of the most complex protostructures discovered is a massive (Mtot=1015.1MM_{tot}=10^{15.1}M_\odot) system at z3.47z\sim3.47 that contains six peaks and 55 spectroscopic members. We also discover protostructures at z3.30z\sim3.30 and z3.70z\sim3.70 that appear to at least partially overlap on sky with the protostructure at z3.47z\sim3.47, suggesting a possible connection. We additionally report on the discovery of three massive protostructures at z=2.67z=2.67, 2.80, and 4.14 and discuss their properties. Finally, we discuss the relationship between star formation rate and environment in the richest of these protostructures, finding an enhancement of star formation activity in the densest regions. The diversity of the protostructures reported here provide an opportunity to study the complex effects of dense environments on galaxy evolution over a large redshift range in the early universe.Comment: 10 pages, 4 figures, 1 tabl

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Azimuthal anisotropy at RHIC: the first and fourth harmonics

    Get PDF
    We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data tables are at http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
    corecore