73 research outputs found

    A phase 1b open-label dose-finding study of ustekinumab in young adults with type 1 diabetes

    Get PDF
    Aim We assessed the safety of ustekinumab (a monoclonal antibody used in psoriasis to target the IL-12 and IL-23 pathways) in a small cohort of recent-onset (<100 days of diagnosis) adults with type 1 diabetes (T1D) by conducting a pilot open-label dose-finding and mechanistic study (NCT02117765) at the University of British Columbia. Methods We sequentially enrolled 20 participants into four subcutaneous dosing cohorts: i) 45mg loading-weeks 0/4/16, ii) 45mg maintenance-weeks 0/4/16/28/40, iii) 90mg loading-weeks 0/4/16 and iv) 90mg maintenance-weeks 0/4/16/28/40. The primary endpoint was safety as assessed by an independent data and safety monitoring board (DSMB) but we also measured mixed meal tolerance test C-peptide, insulin use/kg, and HbA1c. Immunophenotyping was performed to assess immune cell subsets and islet antigen-specific T cell responses. Results Although several adverse events were reported, only two (bacterial vaginosis and hallucinations) were thought to be possibly related to drug administration by the study investigators. At 1 year, the 90mg maintenance dosing cohort had the smallest mean decline in C-peptide AUC (0.1pmol/mL). Immunophenotyping showed that ustekinumab reduced the percentage of circulating Th17, Th1 and Th17.1 cells and proinsulin-specific T cells that secreted IFN-γ and IL-17A. Conclusion Ustekinumab was deemed safe to progress to efficacy studies by the DSMB at doses used to treat psoriasis in adults with T1D. A 90mg maintenance dosing schedule reduced proinsulin-specific IFN-γ and IL-17A-producing T cells. Further studies are warranted to determine if ustekinumab can prevent C-peptide AUC decline and induce a clinical response

    Treg gene signatures predict and measure type 1 diabetes trajectory

    Get PDF
    BACKGROUND: Multiple therapeutic strategies to restore immune regulation and slow type 1 diabetes (T1D) progression are in development and testing. A major challenge has been defining biomarkers to prospectively identify subjects likely to benefit from immunotherapy and/or measure intervention effects. We previously found that compared to healthy controls, Tregs from children with new-onset T1D have an altered Treg gene signature (TGS), suggesting this could be an immunoregulatory biomarker. METHODS: nanoString was used to assess the TGS in sorted Tregs (CD4+CD25hiCD127lo) or Peripheral Blood Mononuclear Cells (PBMC) from individuals with T1D or type 2 diabetes, healthy controls, or T1D recipients of immunotherapy. Biomarker discovery pipelines were developed and applied to various sample group comparisons. RESULTS: Compared to controls, the TGS in isolated Tregs or PBMCs is altered in adult new-onset and cross-sectional T1D cohorts, with sensitivity and specificity of biomarkers increased by including T1D-associated single nucleotide polymorphisms in algorithms. The TGS was distinct in T1D versus type 2 diabetes, indicating disease-specific alterations. TGS measurement at the time of T1D onset revealed an algorithm that accurately predicted future rapid versus slow C-peptide decline, as determined by longitudinal analysis of placebo arms of START and T1DAL trials. The same algorithm stratified participants in a phase I/II clinical trial of ustekinumab (αIL-12/23p40) for future rapid versus slow C-peptide decline. CONCLUSION: These data suggest that biomarkers based on measuring Treg gene signatures could be a new approach to stratify patients and monitor autoimmune activity in T1D

    Increased Systemic Th17 Cytokines Are Associated with Diastolic Dysfunction in Children and Adolescents with Diabetic Ketoacidosis

    Get PDF
    Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in 17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute DKA

    Autologous bone marrow-derived mononuclear cells transplantation in type 2 diabetes mellitus: effect on β-cell function and insulin sensitivity

    Get PDF
    BACKGROUND: Insulin resistance and insulin deficiency are the cardinal defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite the plethora of anti-diabetic medications, drugs specifically targeting the β-cells are still desired. Stem cell therapy has emerged as a novel therapeutics strategy to target β-cells; however, their mechanism of action has not been well defined. This study aims to examine the efficacy and safety of autologous bone marrow-derived mononuclear cells (ABM-MNCs) transplantation in T2DM, and explores the mechanistic insights into stem cells action through metabolic studies. METHODS: Seven T2DM patients with the duration of disease ≥5 years, receiving triple oral anti-diabetic drugs along with insulin (≥0.4 IU per kg per day) and HbA1c ≤ 7.5% (≤58.0 mmol/mol) were enrolled for ABM-MNCs administration through a targeted approach. The primary end-point was a reduction in insulin requirement by ≥50% from baseline, while maintaining HbA1c < 7.0% (<53.0 mmol/mol) with improvement in insulin secretion, and/or insulin sensitivity after ABM-MNCs transplantation. RESULTS: Six out of 7 (90%) patients achieved the primary end-point. At 6 months, there was a significant reduction in insulin requirement by 51% as compared to baseline (p < 0.003). This was accompanied by a significant increase in the 2nd phase C-peptide response during hyperglycemic clamp (p = 0.018), whereas there were no significant alterations in insulin sensitivity and glucose disposal rate during hyperinsulinemic-euglycemic clamp relative to the baseline. Other measures of β-cell indices like HOMA-β, and stimulated C-peptide response to glucagon and mixed meal tolerance test were non-contributory. CONCLUSION: ABM-MNCs transplantation results in significant reduction in insulin doses and improvement in C-peptide response in patients with T2DM. Metabolic studies may be more useful than conventional indices to predict β-cell function in patients with advanced duration of T2DM. Trial registration-Clinicaltrials.gov NCT01759823
    • …
    corecore