4,034 research outputs found

    Generalized parton distributions of nuclei

    Full text link
    We review recent theoretical results on generalized parton distributions (GPDs) of nuclei, emphasizing the following three roles of nuclear GPDs: (i) complementarity to free proton GPDs, (ii) the enhancement of traditional nuclear effects such as nuclear binding, EMC effect, nuclear shadowing, and (iii) an access to novel nuclear effects such as medium modifications of bound nucleons.Comment: 5 pages, 2 figures. Revised version contains additional references. Presented at CIPANP 2009: 10th Conference on the Intersections of Particle and Nuclear Physics, La Jolla, California, May 26-31, 200

    The Electron-Ion Collider

    Full text link
    The future Electron-Ion Collider (EIC) is a proposed new facility to collide high-energy electrons with beams of polarized protons/light nuclei and unpolarized nuclei. We overview the goals of the project and key measurements at the EIC. We also briefly comment on recent developments of the project.Comment: 4 pages, 1 figure. Presented at CIPANP 2009: 10th Conference on the Intersections of Particle and Nuclear Physics, La Jolla, California, May 26-31, 200

    Managing urban socio-technical change? Comparing energy technology controversies in three European contexts

    Get PDF
    A {\em local graph partitioning algorithm} finds a set of vertices with small conductance (i.e. a sparse cut) by adaptively exploring part of a large graph GG, starting from a specified vertex. For the algorithm to be local, its complexity must be bounded in terms of the size of the set that it outputs, with at most a weak dependence on the number nn of vertices in GG. Previous local partitioning algorithms find sparse cuts using random walks and personalized PageRank. In this paper, we introduce a randomized local partitioning algorithm that finds a sparse cut by simulating the {\em volume-biased evolving set process}, which is a Markov chain on sets of vertices. We prove that for any set of vertices AA that has conductance at most ϕ\phi, for at least half of the starting vertices in AA our algorithm will output (with probability at least half), a set of conductance O(ϕ1/2log⁥1/2n)O(\phi^{1/2} \log^{1/2} n). We prove that for a given run of the algorithm, the expected ratio between its computational complexity and the volume of the set that it outputs is O(ϕ−1/2polylog(n))O(\phi^{-1/2} polylog(n)). In comparison, the best previous local partitioning algorithm, due to Andersen, Chung, and Lang, has the same approximation guarantee, but a larger ratio of O(ϕ−1polylog(n))O(\phi^{-1} polylog(n)) between the complexity and output volume. Using our local partitioning algorithm as a subroutine, we construct a fast algorithm for finding balanced cuts. Given a fixed value of ϕ\phi, the resulting algorithm has complexity O((m+nϕ−1/2)polylog(n))O((m+n\phi^{-1/2}) polylog(n)) and returns a cut with conductance O(ϕ1/2log⁥1/2n)O(\phi^{1/2} \log^{1/2} n) and volume at least vϕ/2v_{\phi}/2, where vϕv_{\phi} is the largest volume of any set with conductance at most ϕ\phi.Comment: 20 pages, no figure

    On the nature of bias and defects in the software specification process

    Get PDF
    Implementation bias in a specification is an arbitrary constraint in the solution space. This paper describes the problem of bias. Additionally, this paper presents a model of the specification and design processes describing individual subprocesses in terms of precision/detail diagrams and a model of bias in multi-attribute software specifications. While studying how bias is introduced into a specification we realized that software defects and bias are dual problems of a single phenomenon. This was used to explain the large proportion of faults found during the coding phase at the Software Engineering Laboratory at NASA/GSFC

    p6 - Chiral Resonating Valence Bonds in the Kagome Antiferromagnet

    Full text link
    The Kagome Heisenberg antiferromagnet is mapped onto an effective Hamiltonian on the star superlattice by Contractor Renormalization. Comparison of ground state energies on large lattices to Density Matrix Renormalization Group justifies truncation of effective interactions at range 3. Within our accuracy, magnetic and translational symmetries are not broken (i.e. a spin liquid ground state). However, we discover doublet spectral degeneracies which signal the onset of p6 - chirality symmetry breaking. This is understood by simple mean field analysis. Experimentally, the p6 chiral order parameter should split the optical phonons degeneracy near the zone center. Addition of weak next to nearest neighbor coupling is discussed.Comment: 7 pages, 5 figures including supplementary materia

    Roll, Jordan Roll

    Get PDF

    Ring Out Those Bells

    Get PDF

    Conflict of Laws Trends - Torts

    Get PDF
    • 

    corecore