31 research outputs found

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Impaired LAIR-1-mediated immune control due to collagen degradation in fibrosis

    Get PDF
    Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases

    Lipoic acid plays a role in scleroderma: insights obtained from scleroderma dermal fibroblasts

    Get PDF
    Abstract Introduction Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis of the skin and organs. Increase in oxidative stress and platelet-derived growth factor receptor (PDGFR) activation promote type I collagen (Col I) production, leading to fibrosis in SSc. Lipoic acid (LA) and its active metabolite dihydrolipoic acid (DHLA) are naturally occurring thiols that act as cofactors and antioxidants and are produced by lipoic acid synthetase (LIAS). Our goals in this study were to examine whether LA and LIAS were deficient in SSc patients and to determine the effect of DHLA on the phenotype of SSc dermal fibroblasts. N-acetylcysteine (NAC), a commonly used thiol antioxidant, was included as a comparison. Methods Dermal fibroblasts were isolated from healthy subjects and patients with diffuse cutaneous SSc. Matrix metalloproteinase (MMPs), tissue inhibitors of MMPs (TIMP), plasminogen activator inhibitor 1 (PAI-1) and LIAS were measured by enzyme-linked immunosorbent assay. The expression of Col I was measured by immunofluorescence, hydroxyproline assay and quantitative PCR. PDGFR phosphorylation and α-smooth muscle actin (αSMA) were measured by Western blotting. Student’s t-tests were performed for statistical analysis, and P-values less than 0.05 with two-tailed analysis were considered statistically significant. Results The expression of LA and LIAS in SSc dermal fibroblasts was lower than normal fibroblasts; however, LIAS was significantly higher in SSc plasma and appeared to be released from monocytes. DHLA lowered cellular oxidative stress and decreased PDGFR phosphorylation, Col I, PAI-1 and αSMA expression in SSc dermal fibroblasts. It also restored the activities of phosphatases that inactivated the PDGFR. SSc fibroblasts produced lower levels of MMP-1 and MMP-3, and DHLA increased them. In contrast, TIMP-1 levels were higher in SSc, but DHLA had a minimal effect. Both DHLA and NAC increased MMP-1 activity when SSc cells were stimulated with PDGF. In general, DHLA showed better efficacy than NAC in most cases. Conclusions DHLA acts not only as an antioxidant but also as an antifibrotic because it has the ability to reverse the profibrotic phenotype of SSc dermal fibroblasts. Our study suggests that thiol antioxidants, including NAC, LA, or DHLA, could be beneficial for patients with SSc.http://deepblue.lib.umich.edu/bitstream/2027.42/112060/1/13075_2014_Article_411.pd

    Ethnicity and hip fracture.

    No full text

    The identification of CCL18 as biomarker of disease activity in localized scleroderma

    No full text
    Background: Localized Scleroderma (LoS) encompasses a group of idiopathic skin conditions characterized by (sub)cutaneous inflammation and subsequent development of fibrosis. Currently, lack of accurate tools enabling disease activity assessment leads to suboptimal treatment approaches. Objective: To investigate serum concentrations of cytokines and chemokines implicated in inflammation and angiogenesis in LoS and explore their potential to be utilized as biomarker of disease activity. Additionally, to investigate the implication of potential biomarkers in disease pathogenesis. Methods: A 39-plex Luminex immuno-assay was performed in serum samples of 74 LoS and 22 Healthy Controls. The relation between a validated clinical measure of disease activity (mLoSSI) and serum analytes was investigated. Additionally, gene and protein expression were investigated in circulating cells and skin biopsies. Results: From the total of 39, 10 analytes (CCL18, CXCL9, CXCL10, CXCL13, TNFRII, Galectin-9, TIE-1, sVCAM, IL-18, CCL19) were elevated in LoS serum. Cluster analysis of serum samples revealed CCL18 as most important analyte to discriminate between active and inactive disease. At individual patient level, CCL18 serum levels correlated strongest with mLoSSI-scores (rs = 0.4604, P < 0.0001) and in longitudinal measures CCL18 concentrations normalised with declining disease activity upon treatment initiation. Additionally, CCL18 was elevated in LoS serum, and not in (juvenile) dermatomyositis or spinal muscular atrophy. Importantly, CCL18 gene and protein expression was increased at the inflammatory border of cutaneous LoS lesions, with normal expression in unaffected skin and circulating immune cells. Conclusion: CCL18 is specific for disease activity in LoS thereby providing relevance as a biomarker for this debilitating disease

    Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis

    No full text
    Item does not contain fulltextOBJECTIVES: Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS: In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3 (f/f) mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS: Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS: We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease

    Fatty Acid and Carnitine Metabolism Are Dysregulated in Systemic Sclerosis Patients

    Get PDF
    Systemic sclerosis (SSc) is a rare chronic disease of unknown pathogenesis characterized by fibrosis of the skin and internal organs, vascular alteration, and dysregulation of the immune system. In order to better understand the immune system and its perturbations leading to diseases, the study of the mechanisms regulating cellular metabolism has gained a widespread interest. Here, we have assessed the metabolic status of plasma and dendritic cells (DCs) in patients with SSc. We identified a dysregulated metabolomic signature in carnitine in circulation (plasma) and intracellularly in DCs of SSc patients. In addition, we confirmed carnitine alteration in the circulation of SSc patients in three independent plasma measurements from two different cohorts and identified dysregulation of fatty acids. We hypothesized that fatty acid and carnitine alterations contribute to potentiation of inflammation in SSc. Incubation of healthy and SSc dendritic cells with etoposide, a carnitine transporter inhibitor, inhibited the production of pro-inflammatory cytokines such as IL-6 through inhibition of fatty acid oxidation. These findings shed light on the altered metabolic status of the immune system in SSc patients and opens up for potential novel avenues to reduce inflammation

    Association of MicroRNA-618 Expression With Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients With Systemic Sclerosis

    No full text
    Objective. Plasmacytoid dendritic cells (PDCs) are a critical source of type I interferons (IFNs) that can contribute to the onset and maintenance of autoimmunity. Molecular mechanisms leading to PDC dysregulation and a persistent type I IFN signature are largely unexplored, especially in patients with systemic sclerosis (SSc), a disease in which PDCs infiltrate fibrotic skin lesions and produce higher levels of IFN alpha than those in healthy controls. This study was undertaken to investigate potential microRNA (miRNA)-mediated epigenetic mechanisms underlying PDC dysregulation and type I IFN production in SSc. Methods. We performed miRNA expression profiling and validation in highly purified PDCs obtained from the peripheral blood of 3 independent cohorts of healthy controls and SSc patients. Possible functions of miRNA-618 (miR-618) on PDC biology were identified by overexpression in healthy PDCs. Results. Expression of miR-618 was up-regulated in PDCs from SSc patients, including those with early disease who did not present with skin fibrosis. IFN regulatory factor 8, a crucial transcription factor for PDC development and activation, was identified as a target of miR-618. Overexpression of miR-618 reduced the development of PDCs from CD34+ cells in vitro and enhanced their ability to secrete IFN alpha, mimicking the PDC phenotype observed in SSc patients. Conclusion. Up-regulation of miR-618 suppresses the development of PDCs and increases their ability to secrete IFN alpha, potentially contributing to the type I IFN signature observed in SSc patients. Considering the importance of PDCs in the pathogenesis of SSc and other diseases characterized by a type I IFN signature, miR-618 potentially represents an important epigenetic target to regulate immune system homeostasis in these conditions.Supported by Reumafonds (project 13-2-304). Dr. Rossato's work was supported by the European Commission (IEF Marie Curie Actions fellowship 622811; project MicroSCAP). Dr. Affandi's work was supported by Reumafonds (grant NR-10-1-301) and the Netherlands Organization for Scientific Research (NWO; Mosaic grant 017.008.014). Dr. Broen's work was supported by a personal Veni grant from the NWO (project 91614041). Dr. Radstake's work was supported the European Research Council (starting grant ERC-2011-StG; project Circumvent).Peer reviewe
    corecore