354 research outputs found
Molten Salt Thermal Energy Storage Systems
The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored
Recommended from our members
Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status
Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals
Winding number and non-BPS bound states of walls in nonlinear sigma models
Non-supersymmetric multi-wall configurations are generically unstable. It is
proposed that the stabilization in compact space can be achieved by introducing
a winding number into the model. A BPS-like bound is studied for the energy of
configuration with nonvanishing winding number. Winding number is implemented
in an supersymmetric nonlinear sigma model with two chiral scalar
fields and a bound states of BPS and anti-BPS walls is found to exist in
noncompact spaces. Even in compactified space , this nontrivial bound
state persists above a critical radius of the compact dimension.Comment: 20pages, 14 figures, minor misprint corrections, figures added,
explanation of winding number adde
Realistic construction of split fermion models
The Standard Model flavor structure can be explained in theories where the
fermions are localized on different points in a compact extra dimension. We
show that models with two bulk scalars compactified on an orbifold can produce
such separations in a natural way. We study the shapes and overlaps of the
fermion wave functions. We show that, generically, realistic models of Gaussian
overlaps are unnatural since they require very large Yukawa couplings between
the fermions and the bulk scalars. We give an example of a five dimensional two
scalar model that accounts naturally for the observed quark masses, mixing
angles and CP violation.Comment: 15 pages, 5 figures, typos corrected, discussion on the implications
of SM rare decay processes added, to appear in PR
A possible minimal gauge-Higgs unification
A possible minimal model of the gauge-Higgs unification based on the higher
dimensional spacetime M^4 X (S^1/Z_2) and the bulk gauge symmetry SU(3)_C X
SU(3)_W X U(1)_X is constructed in some details. We argue that the Weinberg
angle and the electromagnetic current can be correctly identified if one
introduces the extra U(1)_X above and a bulk scalar triplet. The VEV of this
scalar as well as the orbifold boundary conditions will break the bulk gauge
symmetry down to that of the standard model. A new neutral zero-mode gauge
boson Z' exists that gains mass via this VEV. We propose a simple fermion
content that is free from all the anomalies when the extra brane-localized
chiral fermions are taken into account as well. The issues on recovering a
standard model chiral-fermion spectrum with the masses and flavor mixing are
also discussed, where we need to introduce the two other brane scalars which
also contribute to the Z' mass in the similar way as the scalar triplet. The
neutrinos can get small masses via a type I seesaw mechanism. In this model,
the mass of the Z' boson and the compactification scale are very constrained as
respectively given in the ranges: 2.7 TeV < m_Z' < 13.6 TeV and 40 TeV < 1/R <
200 TeV.Comment: 20 pages, revised versio
Duration of Supplemental Oxygen Requirement and Predictors in Severe COVID-19 Patients in Ethiopia: A Survival Analysis
BACKGROUND፡ With the rising number of new cases of COVID-19, understanding the oxygen requirement of severe patients assists in identifying at risk groups and in making an informed decision on building hospitals capacity in terms of oxygen facility arrangement. Therefore, the study aimed to estimate time to getting off supplemental oxygen therapy and identify predictors among COVID-19 patients admitted to Millennium COVID-19 Care Center in Ethiopia.METHODS: A prospective observational study was conducted among 244 consecutively admitted COVID-19 patients from July to September, 2020. Kaplan Meier plots, median survival times and Log-rank test were used to describe the data and compare survival distribution between groups. Cox proportional hazard survival model was used to identify determinants of time to getting off supplemental oxygen therapy, where hazard ratio (HR), Pvalue and 95%CI for HR were used for testing significance and interpretation of results.RESULTS: Median time to getting off supplemental oxygen therapy among the studied population was 6 days (IQR,4.3-20.0). Factors that affect time to getting off supplemental oxygen therapy were age group (AHR=0.52,95%CI=0.32,0.84, pvalue=0.008 for ≥70 years) and shortness of breath (AHR=0.71,95%CI=0.52,0.96, p-value=0.026).CONCLUSION: Average duration of supplemental oxygen therapy requirement among COVID-19 patients was 6 days and being 70 years and older and having shortness of breath were found to be associated with prolonged duration of supplemental oxygen therapy requirement. This result can be used as a guide in planning institutional resource allocation and patient management to provide a well-equipped care to prevent complications and death from the disease
An Extension for Direct Gauge Mediation of Metastable Supersymmetry Breaking
We study the direct mediation of metastable supersymmetry breaking by a
\Phi^2-deformation to the ISS model and extend it by splitting both Tr\Phi and
Tr\Phi^2 terms in the superpotential and gauging the flavor symmetry. We find
that with such an extension the enough long-lived metastable vacua can be
obtained and the proper gaugino masses can be generated. Also, this allows for
constructing a kind of models which can avoid the Landau pole problem.
Especially, in our metastable vacua there exist a large region for the
parameter m_3 which can satisfy the phenomenology requirements and allow for a
low SUSY breaking scale (\sim 100 TeV).Comment: version in Europhys. Let
Composite Higgs Search at the LHC
The Higgs boson production cross-sections and decay rates depend, within the
Standard Model (SM), on a single unknown parameter, the Higgs mass. In
composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly-interacting sector, additional parameters control the
Higgs properties which then deviate from the SM ones. These deviations modify
the LEP and Tevatron exclusion bounds and significantly affect the searches for
the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced,
which results in deterioration of the Higgs searches but the deviations of the
Higgs couplings can also allow for an enhancement of the gluon-fusion
production channel, leading to higher statistical significances. The search in
the H to gamma gamma channel can also be substantially improved due to an
enhancement of the branching fraction for the decay of the Higgs boson into a
pair of photons.Comment: 32 pages, 16 figure
Linear Confinement for Mesons and Nucleons in AdS/QCD
By using a new parametrization of the dilaton field and including a cubic
term in the bulk scalar potential, we realize linear confinement in both meson
and nucleon sectors within the framework of soft-wall AdS/QCD. At the same time
this model also correctly incorporate chiral symmetry breaking. We compare our
resulting mass spectra with experimental data and find good agreement between
them.Comment: 14 pages, published version in JHE
- …