71 research outputs found

    A tracer monitored titration for seawater total alkalinity

    Get PDF

    Autonomous in situ calibration of ion‐sensitive field effect transistor pH sensors

    Get PDF
    Ion‐sensitive field effect transistor‐based pH sensors have been shown to perform well in high frequency and long‐term ocean sampling regimes. The Honeywell Durafet is widely used due to its stability, fast response, and characterization over a large range of oceanic conditions. However, potentiometric pH monitoring is inherently complicated by the fact that the sensors require careful calibration. Offsets in calibration coefficients have been observed when comparing laboratory to field‐based calibrations and prior work has led to the recommendation that an in situ calibration be performed based on comparison to discrete samples. Here, we describe our work toward a self‐calibration apparatus integrated into a SeapHOx pH, dissolved oxygen, and CTD sensor package. This Self‐Calibrating SeapHOx is capable of autonomously recording calibration values from a high quality, traceable, primary reference standard: equimolar tris buffer. The Self‐Calibrating SeapHOx\u27s functionality was demonstrated in a 6‐d test in a seawater tank at Scripps Institution of Oceanography (La Jolla, California, U.S.A.) and was successfully deployed for 2 weeks on a shallow, coral reef flat (Lizard Island, Australia). During the latter deployment, the tris‐based self‐calibration using 15 on‐board samples exhibited superior reproducibility to the standard spectrophotometric pH‐based calibration using \u3e 100 discrete samples. Standard deviations of calibration pH using tris ranged from 0.002 to 0.005 whereas they ranged from 0.006 to 0.009 for the standard spectrophotometric pH‐based method; the two independent calibration methods resulted in a mean pH difference of 0.008. We anticipate that the Self‐Calibrating SeapHOx will be capable of autonomously providing climate quality pH data, directly linked to a primary seawater pH standard, and with improvements over standard calibration techniques

    A high-tech, low-cost, Internet of Things surfboard fin for coastal citizen science, outreach, and education

    Get PDF
    Coastal populations and hazards are escalating simultaneously, leading to an increased importance of coastal ocean observations. Many well-established observational techniques are expensive, require complex technical training, and offer little to no public engagement. Smartfin, an oceanographic sensor–equipped surfboard fin and citizen science program, was designed to alleviate these issues. Smartfins are typically used by surfers and paddlers in surf zone and nearshore regions where they can help fill gaps between other observational assets. Smartfin user groups can provide data-rich time-series in confined regions. Smartfin comprises temperature, motion, and wet/dry sensing, GPS location, and cellular data transmission capabilities for the near-real-time monitoring of coastal physics and environmental parameters. Smartfin\u27s temperature sensor has an accuracy of 0.05 °C relative to a calibrated Sea-Bird temperature sensor. Data products for quantifying ocean physics from the motion sensor and additional sensors for water quality monitoring are in development. Over 300 Smartfins have been distributed around the world and have been in use for up to five years. The technology has been proven to be a useful scientific research tool in the coastal ocean—especially for observing spatiotemporal variability, validating remotely sensed data, and characterizing surface water depth profiles when combined with other tools—and the project has yielded promising results in terms of formal and informal education and community engagement in coastal health issues with broad international reach. In this article, we describe the technology, the citizen science project design, and the results in terms of natural and social science analyses. We also discuss progress toward our outreach, education, and scientific goals

    Diel Temperature and pH Variability Scale With Depth Across Diverse Coral Reef Habitats

    Get PDF
    Coral reefs are facing intensifying stressors, largely due to global increases in seawater temperature and decreases in pH. However, there is extensive environmental variability within coral reef ecosystems, which can impact how organisms respond to global trends. We deployed spatial arrays of autonomous sensors across distinct shallow coral reef habitats to determine patterns of spatiotemporal variability in seawater physicochemical parameters. Temperature and pH were positively correlated over the course of a day due to solar heating and light‐driven metabolism. The mean temporal and spatial ranges of temperature and pH were positively correlated across all sites, with different regimes of variability observed in different reef types. Ultimately, depth was a reliable predictor of the average diel ranges in both seawater temperature and pH. These results demonstrate that there is widespread environmental variability on diel timescales within coral reefs related to water column depth, which needs to be included in assessments of how global change will locally affect reef ecosystems

    Perspectives on Chemical Oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO

    Get PDF
    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field

    High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison

    Get PDF
    The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change

    Bottle sample TA, pH, and DIC collected during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016

    No full text
    Dataset: Inter-comparison 2016: Bottle Sample TA pH DICThis dataset contains total alkalinity (TA), pH, and dissolved inorganic carbon (DIC) from bottle samples collected 3 to 4 times a day. These data were part of an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in August of 2016. These data were published in Shangguan et al. (2022). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/870368NSF Division of Ocean Sciences (NSF OCE) OCE-145925

    Temperature and salinity by a MicroCAT CTD during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016

    No full text
    Dataset: Inter-comparison 2016: MicroCAT CTD temperature salinityThis dataset contains temperature and salinity by a MicroCAT CTD at a 15-min frequency. These data were part of an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in August of 2016. These data were published in Shangguan et al. (2022). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/870412NSF Division of Ocean Sciences (NSF OCE) OCE-145925

    Gas Diffusion Cell Geometry for a Microfluidic Dissolved Inorganic Carbon Analyzer

    No full text
    • …
    corecore