219 research outputs found

    Topological duality twist and brane instantons in F-theory

    Get PDF
    A variant of the topological twist, involving SL(2,Z) dualities and hence named topological duality twist, is introduced and explicitly applied to describe a U(1) N=4 super Yang-Mills theory on a Kaehler space with holomorphically space-dependent coupling. Three-dimensional duality walls and two-dimensional chiral theories naturally enter the formulation of the duality twisted theory. Appropriately generalized, this theory is relevant for the study of Euclidean D3-brane instantons in F-theory compactifications. Some of its properties and implications are discussed.Comment: 39 pages, 7 figure

    D-brane networks in flux vacua, generalized cycles and calibrations

    Get PDF
    We consider chains of generalized submanifolds, as defined by Gualtieri in the context of generalized complex geometry, and define a boundary operator that acts on them. This allows us to define generalized cycles and the corresponding homology theory. Gauge invariance demands that D-brane networks on flux vacua must wrap these generalized cycles, while deformations of generalized cycles inside of a certain homology class describe physical processes such as the dissolution of D-branes in higher-dimensional D-branes and MMS-like instantonic transitions. We introduce calibrations that identify the supersymmetric D-brane networks, which minimize their energy inside of the corresponding homology class of generalized cycles. Such a calibration is explicitly presented for type II N=1 flux compactifications to four dimensions. In particular networks of walls and strings in compactifications on warped Calabi-Yau's are treated, with explicit examples on a toroidal orientifold vacuum and on the Klebanov-Strassler geometry.Comment: 42 pages, 4 eps figures, version to appear in JHE

    Non-perturbative effects on seven-brane Yukawa couplings

    Get PDF
    We analyze non-perturbative corrections to the superpotential of seven-brane gauge theories on type IIB and F-theory warped Calabi-Yau compactifications. We show in particular that such corrections modify the holomorphic Yukawa couplings by an exponentially suppressed contribution, generically solving the Yukawa rank-one problem present in F-theory local models. We provide explicit expressions for the non-perturbative correction to the seven-brane superpotential, and check that it is related to a non-commutative deformation to the tree-level superpotential via the Seiberg-Witten map.Comment: 4 pages. v2: minor changes, footnotes and citations added. Version to be published in PR

    Hidden Selection Rules, M5-instantons and Fluxes in F-theory

    Full text link
    We introduce a new approach to investigate the selection rules governing the contributions of fluxed M5-instantons to the F-theory four-dimensional effective action, with emphasis on the generation of charged matter F-terms. The structure of such couplings is unraveled by exploiting the perturbative and non-perturbative homological relations, introduced in our companion paper arXiv:1506.06764, which encode the interplay between the self-dual 3-form flux on the M5-brane, the background 4-form flux and certain fibral curves. The latter are wrapped by time-like M2-branes representing matter insertions in the instanton path integral. In particular, we clarify how fluxed M5-instantons detect the presence of geometrically massive U(1)U(1)s which are responsible for `hidden' selection rules. We discuss how for non-generic embeddings the M5-instanton can probe `locally massless' U(1)U(1) symmetries if the rank of its Mordell-Weil group is enhanced compared to that of the bulk. As a phenomenological off-spring we propose a new type of non-perturbative corrections to Yukawa couplings which may change the rank of the Yukawa matrix. Along the way, we also gain new insights into the structure of massive U(1)U(1) gauge fluxes in the stable degeneration limit.Comment: 42 pages; v2: references adde

    Non-perturbative selection rules in F-theory

    Get PDF
    We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.Comment: 49 pages, 9 figures; v2: references adde

    On type II superstrings in bosonic backgrounds: the role of fermions and T-duality

    Full text link
    We derive the actions for type II Green-Schwarz strings up to second order in the fermions, for general bosonic backgrounds. We base our work on the so-called normal coordinate expansion. The resulting actions are Îș\kappa-symmetric and, for the case of surviving background supersymmetries, supersymmetric. We first obtain the type IIa superstring action from the 11D supermembrane by double dimensional reduction. Then, by means of a generalization of T-duality we derive the type IIb superstring action. The resulting actions are surprisingly simple and elegant.Comment: 10 pages, latex. more typos correcte

    Symmetries, Sum Rules and Constraints on Effective Field Theories

    Get PDF
    Using unitarity, analyticity and crossing symmetry, we derive universal sum rules for scattering amplitudes in theories invariant under an arbitrary symmetry group. The sum rules relate the coefficients of the energy expansion of the scattering amplitudes in the IR to total cross sections integrated all the way up to the UV. Exploiting the group structure of the symmetry, we systematically determine all the independent sum rules and positivity conditions on the expansion coefficients. For effective field theories the amplitudes in the IR are calculable and hence the sum rules set constraints on the parameters of the effective Lagrangian. We clarify the impact of gauging on the sum rules for Goldstone bosons in spontaneously broken gauge theories. We discuss explicit examples that are relevant for WW-scattering, composite Higgs models, and chiral perturbation theory. Certain sum rules based on custodial symmetry and its extensions provide constraints on the Higgs boson coupling to the electroweak gauge bosons.Comment: 50 pages, 5 figures, 5 appendices; several typos fixed, discussions improved, references added; results unchange

    Freezing E3-brane instantons with fluxes

    Get PDF
    E3-instantons that generate non-perturbative superpotentials in IIB N=1 compactifications are more frequent than currently believed. Worldvolume fluxes will typically lift the E3-brane geometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-modes. We consistently incorporate SL(2, Z) monodromies and world-volume fluxes in the effective theory of the E3-brane fermions and study the resulting zero-mode spectrum, highlighting the relation between F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of superpotential terms, which reproduces and generalizes available results. Furthermore, we show how worldvolume fluxes can be explicitly constructed in a one-modulus compactification, such that an E3-instanton has exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios.Comment: 8 pages. Proceedings of the "XVII European Workshop on String Theory 2011", Padova, Italy, 5-9 September 201

    Timelike structures of ten-dimensional supersymmetry

    Full text link
    In several contexts, supersymmetry can be reformulated in terms of calibrations, namely forms whose integrals measure minimal energies. It has been conjectured that this should be possible in general. For type II supergravity, we present a new system of equations which realizes this expectation. Besides the customary D-brane calibrations, it also includes NS5-brane and KK5-monopole calibrations. It is equivalent to supersymmetry under the assumption that the Killing vector associated to supersymmetry is timelike. No assumption is made on a factorization of spacetime. We also obtain a version of the system which is manifestly S-invariant and we present an application to near-horizon backgrounds. Using calibration, a definition of central charges in purely gravitational terms is given.Comment: 61 pages; v2: matches published version, comments adde

    Hamiltonian linearization of the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge: a radiation gauge for background-independent gravitational waves in a post-Minkowskian Einstein spacetime

    Get PDF
    In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy E^ADM{\hat E}_{ADM}, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of {\it non-harmonic} 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) raˉ(τ,σ⃗)r_{\bar a}(\tau ,\vec \sigma), πaˉ(τ,σ⃗)\pi_{\bar a}(\tau ,\vec \sigma), aˉ=1,2\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, {\it without introducing any background 4-metric}, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in E^ADM{\hat E}_{ADM}. {\it We solve all the constraints} of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's raˉ(τ,σ⃗)r_{\bar a}(\tau ,\vec \sigma), which replace the two polarizations of the TT harmonic gauge, and that {\it linearized Einstein's equations are satisfied} . Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.Comment: LaTeX (RevTeX3), 94 pages, 4 figure
    • 

    corecore