2,256 research outputs found
Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures
We have found that there is more than one type of conducting carriers
generated in LaAlO3/SrTiO3 heterostructures by comparing the sheet carrier
density and mobility from optical transmission spectroscopy with those from
dc-transport measurements. When multiple types of carriers exist, optical
characterization dominantly reflects the contribution from the high-density
carriers whereas dc-transport measurements may exaggerate the contribution of
the high-mobility carriers even though they are present at low-density. Since
the low-temperature mobilities determined by dc-transport in the LaAlO3/SrTiO3
heterostructures are much higher than those extracted by optical method, we
attribute the origin of high-mobility transport to the low-density conducting
carriers.Comment: 3 figures, supplemental materia
Reflective Coating for Lightweight X-Ray Optics
X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors
The reflective learning continuum: reflecting on reflection
The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research which considers reflection within the context of both the marketing and general business education literature. This paper describes the use of an instrument which can be used to measure four identified levels of a reflection hierarchy: habitual action, understanding, reflection and intensive reflection and two conditions for reflection: instructor to student interaction and student to student interaction. Further we demonstrate the importance of reflective learning in predicting graduates’ perception of program quality. Although the focus was on assessment of MBA level curricula, the findings have great importance to marketing education and educators
Shedding New Light on Kaon-Nucleon/Nuclei Interaction and Its Astrophysical Implications with the AMADEUS Experiment at DAFNE
The AMADEUS experiment deals with the investigation of the low-energy
kaon-nuclei hadronic interaction at the DA{\Phi}NE collider at LNF-INFN, which
is fundamental to respond longstanding questions in the non-perturbative QCD
strangeness sector. The antikaon-nucleon potential is investigated searching
for signals from possible bound kaonic clusters, which would open the
possibility for the formation of cold dense baryonic matter. The confirmation
of this scenario may imply a fundamental role of strangeness in astrophysics.
AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset,
exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In
this paper, together with a review on the multi-nucleon K- absorption and the
particle identification procedure, the first results on the {\Sigma}0-p channel
will be presented including a statistical analysis on the possible accomodation
of a deeply bound stateComment: 6 pages, 2 figure, 1 table, HADRON 2015 conferenc
First measurement of the K−n →Λπ−non-resonant transition amplitude below threshold
We present the analysis of K−absorption processes on He4 leading to Λπ−final states, measured with the KLOE spectrometer at the DAΦNE e+e−collider and extract, for the first time, the modulus of the non-resonant K−n →Λπ−direct production amplitude about 33 MeV below the K‾N threshold. This analysis also allows to disentangle the K−nuclear absorption at-rest from the in-flight capture, for K−momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, and the modulus of the non-resonant K−n →Λπ−amplitude for K−absorption at-rest is found to be |AK−n→Λπ−|=(0.334±0.018stat−0.058+0.034syst)fm
Effect of Nanofiber Morphology on PVDF Air Filter Performance
Poly(vinylidene fluoride) (PVDF) can be formed into small nanofibers by electrospinning that are useful for a variety of applications. Air filters produced with PVDF are known to capture ionic particles with high efficiency. Existing studies have focused on the effects of electrospinning conditions on nanofiber morphology. In this study fibers were generated with varying morphologies. Air filters were then made from each sample and then characterized by TSI. Air filters were found to have increased resistances relative to their capture efficiencies according to particle diameter. Capture efficiencies did not correlate strongly with particle diameter, and the presence of beads in fiber samples did not have an impact on filter performance. Subsequent studies should focus on the development of statically charged PVDF mats to compare performance with the data generated by this study
X-ray emission during the muonic cascade in hydrogen
We report our investigations of X rays emitted during the muonic cascade in
hydrogen employing charge coupled devices as X-ray detectors. The density
dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha,
K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of
liquid hydrogen density. In this density region collisional processes dominate
the cascade down to low energy levels. A comparison with recent calculations is
given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter
De Broglie Wavelength of a Nonlocal Four-Photon
Superposition is one of the most distinct features of quantum theory and has
been demonstrated in numerous realizations of Young's classical double-slit
interference experiment and its analogues. However, quantum entanglement - a
significant coherent superposition in multiparticle systems - yields phenomena
that are much richer and more interesting than anything that can be seen in a
one-particle system. Among them, one important type of multi-particle
experiments uses path-entangled number-states, which exhibit pure higher-order
interference and allow novel applications in metrology and imaging such as
quantum interferometry and spectroscopy with phase sensitivity at the
Heisenberg limit or quantum lithography beyond the classical diffraction limit.
Up to now, in optical implementations of such schemes lower-order interference
effects would always decrease the overall performance at higher particle
numbers. They have thus been limited to two photons. We overcome this
limitation and demonstrate a linear-optics-based four-photon interferometer.
Observation of a four-particle mode-entangled state is confirmed by
interference fringes with a periodicity of one quarter of the single-photon
wavelength. This scheme can readily be extended to arbitrary photon numbers and
thus represents an important step towards realizable applications with
entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200
Conceptual learning : the priority for higher education
The common sense notion of learning as the all-pervasive acquisition of new behaviour and knowledge, made vivid by experience, is an incomplete characterisation, because it assumes that the learning of behaviour and the learning of knowledge are indistinguishable, and that acquisition constitutes learning without reference to transfer. A psychological level of analysis is used to argue that conceptual learning should have priority in higher education
- …
