7 research outputs found

    Copper to Zinc Ratio as Disease Biomarker in Neonates with Early-Onset Congenital Infections

    Get PDF
    Copper (Cu) and zinc (Zn) are essential trace elements for regular development. Acute infections alter their metabolism, while deficiencies increase infection risks. A prospective observational case-control study was conducted with infected (n = 21) and control (n = 23) term and preterm newborns. We analyzed trace element concentrations by X-ray fluorescence, and ceruloplasmin (CP) by Western blot. Median concentration of Cu at birth (day 1) was 522.8 [387.1–679.7] μg/L, and Zn was 1642.4 ± 438.1 μg/L. Cu and Zn correlated positively with gestational age in control newborns. Cu increased in infected newborns from day 1 to day 3. CP correlated positively to Cu levels at birth in both groups and on day 3 in the group of infected neonates. The Cu/Zn ratio was relatively high in infected newborns. Interleukin (IL)-6 concentrations on day 1 were unrelated to Cu, Zn, or the Cu/Zn ratio, whereas C-reactive protein (CRP) levels on day 3 correlated positively to the Cu/Zn -ratio at both day 1 and day 3. We conclude that infections affect the trace element homeostasis in newborns: serum Zn is reduced, while Cu and CP are increased. The Cu/Zn ratio combines both alterations, independent of gestational age. It may, thus, constitute a meaningful diagnostic biomarker for early-onset infections. View Full-Tex

    Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P

    Get PDF
    Selenoprotein biosynthesis relies on the co-translational insertion of selenocysteine in response to UGA codons. Aminoglycoside antibiotics interfere with ribosomal function and may cause codon misreading. We hypothesized that biosynthesis of the selenium (Se) transporter selenoprotein P (SELENOP) is particularly sensitive to antibiotics due to its ten in frame UGA codons. As liver regulates Se metabolism, we tested the aminoglycosides G418 and gentamicin in hepatoma cell lines (HepG2, Hep3B and Hepa1-6) and in experimental mice. In vitro, SELENOP levels increased strongly in response to G418, whereas expression of the glutathione peroxidases GPX1 and GPX2 was marginally affected. Se content of G418-induced SELENOP was dependent on Se availability, and was completely suppressed by G418 under Se-poor conditions. Selenocysteine residues were replaced mainly by cysteine, tryptophan and arginine in a codon-specific manner. Interestingly, in young healthy mice, antibiotic treatment failed to affect Selenop biosynthesis to a detectable degree. These findings suggest that the interfering activity of aminoglycosides on selenoprotein biosynthesis can be severe, but depend on the Se status, and other parameters likely including age and general health. Focused analyses with aminoglycoside-treated patients are needed next to evaluate a possible interference of selenoprotein biosynthesis by the antibiotics and elucidate potential side effects

    Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy

    Get PDF
    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM

    Factors impacting the hepatic selenoprotein expression in matters of critical illness

    Get PDF
    Selenoproteine spielen eine wichtige Rolle in der antioxidativen Abwehr und bei Immunreaktionen. Der Selen(Se)metabolismus wird von Hepatozyten gesteuert, die das Se-Transportprotein Selenoprotein P (SEPP) synthetisieren und sezernieren. SEPP nimmt bei kritischen Erkrankungen, z. B. Sepsis ab und führt zu niedrigen Se-Spiegeln. Sepsis triggert die übermäßige Produktion von proinflammatorischen Zytokinen. Aminoglykosid-Antibiotika (AG), die oft bei schwerer Sepsis eingesetzt werden, induzieren Fehlinterpretationen der mRNA inklusive des Stoppcodons UGA welches für die Selenoprotein-Biosynthese notwendig ist. Es wurden daher die molekularen Wechselwirkungen zwischen den Zytokinen IL-6, IL-1b und TNFa, AG und dem Se-Status mit der Biosynthese in Leberzelllinien untersucht. IL-6 führte zu einer starken Reduktion der SEPP-mRNA und einer dosisabhängigen Reduktion von SEPP. Parallel dazu reduzierte IL-6 das Transkriptlevel, die Proteinexpression und die Enzymaktivität der Typ-I-Dejodase (DIO1). Auf die Expression der antioxidativ-wirkenden Glutathionperoxidasen (GPX) wirkte IL-6 isozymspezifisch; während die Transkriptkonzentrationen von GPX2 anstiegen und die von GPX4 abnahmen, blieb GPX1 unbeeinflusst. Die IL-6-abhängigen Effekte bestätigten sich auch in Reportergenassays von SEPP-, DIO1-, GPX2- und GPX4-Promotorkonstrukten. Um die Wirkungen von AG auf die Selenoprotein-Translation besser zu verstehen, wurden die SECIS-Elemente von GPX1-, GPX4- und SEPP-Transkripten in ein Reportersystem kloniert und auf eine Regulation durch AG und Se analysiert. Die Ergebnisse zeigen, dass der korrekte Se-Einbau vom Se-Status, von der AG-Konzentration und dem spezifischen SECIS-Element abhängig ist. Auf transkriptionaler und translationaler Ebene führten AG zu stark erhöhten SEPP-Spiegeln, während die Expression und Enzymaktivität von GPX und DIO1 nur in geringerem Ausmaß beeinflusst wurden. Eine Analyse der Se-Beladung zeigte, dass der Se-Gehalt von SEPP stark durch AG reduziert und vom Se-Status abhängig war.Selenoproteins play important roles in antioxidant defence and immunoregulation. Selenium (Se) metabolism is controlled by hepatocytes synthesizing and secreting the Se-transporter selenoprotein P (SEPP) declining in critical illness, e.g., sepsis. Sepsis triggers excessive production of pro-inflammatory cytokines. Aminoglycoside (AG) antibiotics applied in sepsis in induce mRNA misinterpretation including the stop codon UGA required during selenoproteins biosynthesis. The molecular interplay between the cytokines IL-6, IL-1b and TNFa, AG and Se-status on selenoprotein expression was investigated in hepatic-derived cell lines. IL-6 strongly reduced the level of SEPP mRNA and secreted SEPP in a dose-dependent manner. Likewise, expression of selenoenzyme type 1 deiodinase (DIO1) declined at the transcript, protein and enzyme activity level. The effects of IL-6 on the expression of antioxidative-acting glutathione peroxidases (GPX) were isozyme-specific; while transcript level of GPX2 increased and those of GPX4 decreased, GPX1 remained unaffected. IL-6-dependent effects were reflected in reporter gene experiments of selenoprotein promoter constructs. Characterising the effects of AG on selenoprotein translation, the SECIS-elements of GPX1, GPX4 and SEPP transcripts were cloned into a reporter system and analysed for their response to AG and Se. The results indicate that the correct co-translational Se-insertion depends on the Se-status, AG concentration and the specific SECIS-element. At both transcriptional and translational levels, SEPP levels were strongly increased in response to AG, whereas the expression and enzyme activity of GPX and DIO1 were affected to a lower degree. Analysis Se-status indicate that the Se-content of SEPP was strongly reduced by AG and depends on Se-status

    Hypoxia reduces and redirects selenoprotein biosynthesis

    Get PDF
    Selenium deficiency constitutes a risk factor for the incidence and negative course of severe diseases including sepsis, stroke, autoimmune diseases or cancer. In this study, hypoxia is identified as a powerful stimulus to redirect selenoprotein biosynthesis causing reduced selenoprotein P expression and diminished selenium export from hepatocytes in favour of increased biosynthesis of the essential protective intracellular phospholipid hydroperoxide glutathione peroxidase GPX4. Specifically, hypoxia decreases transcript concentrations of central factors controlling selenium and selenocysteine metabolism including selenophosphate synthetase-2, phosphoseryl-tRNASerSec kinase and selenocysteine lyase, which are all proven to be rate-limiting enzymes in selenoprotein biosynthesis. These effects are paralleled by a general decline of selenoprotein expression; however, not all selenoproteins are affected to the same extent by hypoxia, and GPX4 constitutes an exception as its expression becomes slightly increased. Supplemental selenium is able to overcome the hypoxia-dependent down regulation of selenoprotein expression in our cell culture model system, supporting the concept of using selenium as an adjuvant treatment option in severe diseases. Although it remains to be tested whether these effects constitute a hepatocyte-specific response, the selenium-dependent decline of selenoprotein P biosynthesis under hypoxic conditions may explain the progressive selenium deficit developing in severe diseases.Peer Reviewe

    Hypoxia reduces and redirects selenoprotein biosynthesis

    Get PDF
    Selenium deficiency constitutes a risk factor for the incidence and negative course of severe diseases including sepsis, stroke, autoimmune diseases or cancer. In this study, hypoxia is identified as a powerful stimulus to redirect selenoprotein biosynthesis causing reduced selenoprotein P expression and diminished selenium export from hepatocytes in favour of increased biosynthesis of the essential protective intracellular phospholipid hydroperoxide glutathione peroxidase GPX4. Specifically, hypoxia decreases transcript concentrations of central factors controlling selenium and selenocysteine metabolism including selenophosphate synthetase-2, phosphoseryl-tRNASerSec kinase and selenocysteine lyase, which are all proven to be rate-limiting enzymes in selenoprotein biosynthesis. These effects are paralleled by a general decline of selenoprotein expression; however, not all selenoproteins are affected to the same extent by hypoxia, and GPX4 constitutes an exception as its expression becomes slightly increased. Supplemental selenium is able to overcome the hypoxia-dependent down regulation of selenoprotein expression in our cell culture model system, supporting the concept of using selenium as an adjuvant treatment option in severe diseases. Although it remains to be tested whether these effects constitute a hepatocyte-specific response, the selenium-dependent decline of selenoprotein P biosynthesis under hypoxic conditions may explain the progressive selenium deficit developing in severe diseases.Peer Reviewe
    corecore